|
D.15.22.4 sheafCohBGGsres
Procedure from library sresext.lib (see sresext_lib).
- Usage:
- sheafCohBGGsres(M,l,h); M module, l,h int
- Assume:
- M is graded, and it comes assigned with an admissible degree
vector as an attribute, h>=l, and the basering has n+1
variables.
- Return:
- intmat, cohomology of twists of the coherent sheaf F on P^n
associated to coker(M). The range of twists is determined by l, h.
- Display:
- The intmat is displayed in a diagram of the following form:
with displayCohom(A,l,h,nvars(r)-1);
| l l+1 h
----------------------------------------------------------
n: h^n(F(l)) h^n(F(l+1)) ...... h^n(F(h))
...............................................
1: h^1(F(l)) h^1(F(l+1)) ...... h^1(F(h))
0: h^0(F(l)) h^0(F(l+1)) ...... h^0(F(h))
----------------------------------------------------------
chi: chi(F(l)) chi(F(l+1)) ...... chi(F(h))
| A '-' in the diagram refers to a zero entry; a '*'
refers to a negative entry (= dimension not yet determined).
refers to a not computed dimension.
- Note:
- This procedure is based on the Bernstein-Gel'fand-Gel'fand
correspondence and on Tate resolution ( see [Eisenbud, Floystad,
Schreyer: Sheaf cohomology and free resolutions over exterior
algebras, Trans AMS 355 (2003)] ).
sheafCohBGG(M,l,h) does not compute all values in the above
table. To determine all values of h^i(F(d)), d=l..h,
use sheafCohBGG(M,l-n,h+n).
Example:
| LIB "sresext.lib";
// cohomology of structure sheaf on P^4:
//-------------------------------------------
ring r=0,x(1..3),dp;
module M=0;
intmat A=sheafCohBGGsres(M,-4,1);
A;
==> 3,1,0,0,0,-1,
==> -1,0,0,0,0,0,
==> -1,-1,0,0,1,3
displayCohom(A,-4,1,nvars(r)-1);
==> -4 -3 -2 -1 0 1
==> ----------------------------
==> 2: 3 1 - - - *
==> 1: * - - - - -
==> 0: * * - - 1 3
==> ----------------------------
==> chi: * * 0 0 1 *
| See also:
dimH;
displayCohom;
sheafCoh.
|