|  |  5.1.98 mres 
See
 degBound;
 fres;
 hres;
 ideal;
 lres;
 module;
 res;
 sres.Syntax:mres (ideal_expression,int_expression)
 mres (module_expression,int_expression)Type:resolution
Purpose:computes a minimal free resolution of an ideal or module M with the
standard basis method. More precisely, let A=matrix(M), thenmrescomputes a free resolution of  
 where the columns of the matrix
  are a minimal set of generators
of M if the basering is local or if M is homogeneous.
If the int expression k is not zero, then the computation stops after k steps
and returns a list of modules  , i=1...k. 
 mres(M,0)returns a resolution consisting of at most n+2 modules,
where n is the number of variables of the basering.
Letlist L=mres(M,0);thenL[1]consists of a minimal set of generators of the input,L[2]consists of a minimal set of generators for the first syzygy module ofL[1], etc., untilL[p+1], such that![${\tt L[i]}\neq 0$](sing_167.png) for  , but L[p+1], the first syzygy module ofL[p],
is 0 (if the basering is not a qring).Note:Accessing single elements of a resolution may require some partial
computations to be finished and may therefore take some time.
Note:mreshonoursdegBound.Example:|  |   ring r=31991,(t,x,y,z,w),ls;
  ideal M=t2x2+tx2y+x2yz,t2y2+ty2z+y2zw,
          t2z2+tz2w+xz2w,t2w2+txw2+xyw2;
  resolution L=mres(M,0);
  L;
==>  1      4      15      18      7      1      
==> r <--  r <--  r <--   r <--   r <--  r
==> 
==> 0      1      2       3       4      5      
==> 
  // projective dimension of M is 5
 | 
 |