|  |  7.5.1.0. bistd Procedure from librarybimodules.lib(see  bimodules_lib).
 
Example:Usage:
bistd(M); M is (two-sided) ideal/module
Return:
ideal or module (same type as the argument)
Purpose:
Computes the two-sided Groebner basis of an ideal/module with the help the enveloping algebra of the basering, alternative to twostd() for ideals.
 |  | LIB "bimodules.lib";
ring w = 0,(x,s),Dp;
def W=nc_algebra(1,s); // 1st shift algebra
setring W;
matrix m[3][3]=[s^2,s+1,0],[s+1,0,s^3-x^2*s],[2*s+1, s^3+s^2, s^2];
print(m);
==> s2,   s+1,    s+1, 
==> 0,    -x2s+s3,2s+1,
==> s3+s2,s2,     0    
module L = m; module M2 = bistd(L);
print(M2);
==> 1,1,s+1,
==> 0,1,0,  
==> 0,0,s2  
 | 
 
 |