|  |  7.5.3.0. centerRed Procedure from librarycentral.lib(see  central_lib).
 
Example:Usage:
centerRed( D[, N] ); D int, N optional int
Return:
ideal, generated by computed elements
Purpose:
computes subalgebra generators of the center up to degree D
Note:
In general, one cannot compute the whole center.
Hence, one has to specify a termination condition via arguments D and/or N.
 If D is positive, only central elements up to degree D will be found.
 If D is negative, the termination is determined by N only.
 If N is given, the computation stops if at least N elements have been found.
 Warning: if N is given and bigger than the actual number of generators,
 the procedure may not terminate.
 Current ordering must be a degree compatible well-ordering.
 
 See also:
 center;
 centerVS;
 centralizerRed;
 inCenter.|  | LIB "central.lib";
ring AA = 0,(x,y,z),dp;
matrix D[3][3]=0;
D[1,2]=z;
def A = nc_algebra(1,D); setring A; // it is a Heisenberg algebra
// find a basis of the vector space of
// central elements of degree <= 3:
ideal VSZ = centerVS(3);
// There should be 3 degrees of z.
VSZ;
==> VSZ[1]=z
==> VSZ[2]=z2
==> VSZ[3]=z3
inCenter(VSZ); // check the result
==> 1
// find "minimal" central elements of degree <= 3
ideal SAZ = centerRed(3);
// Only 'z' must be computed
SAZ;
==> SAZ[1]=z
inCenter(SAZ); // check the result
==> 1
 | 
 
 |