|  |  7.5.7.0. makeMalgrange Procedure from librarydmodvar.lib(see  dmodvar_lib).
 
Example:Usage:
makeMalgrange(F [,ORD]); F an ideal, ORD an optional string
Return:
ring (Weyl algebra) containing an ideal IF
Purpose:
create the ideal by Malgrange associated with F = F[1],...,F[P].
Note:
Activate the output ring with the setringcommand. In this ring,
the ideal IF is the ideal by Malgrange corresponding to F.The value of ORD must be an arbitrary ordering in K<_t,_x,_Dt,_Dx>
written in the string form. By default ORD = 'dp'.
 
Display:
If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
 
 |  | LIB "dmodvar.lib";
ring R = 0,(x,y,z),Dp;
ideal I = x^2+y^3, z;
def W = makeMalgrange(I);
setring W;
W;
==> // coefficients: QQ considered as a field
==> // number of vars : 10
==> //        block   1 : ordering dp
==> //                  : names    t(1) t(2) x y z Dt(1) Dt(2) Dx Dy Dz
==> //        block   2 : ordering C
==> // noncommutative relations:
==> //    Dt(1)t(1)=t(1)*Dt(1)+1
==> //    Dt(2)t(2)=t(2)*Dt(2)+1
==> //    Dxx=x*Dx+1
==> //    Dyy=y*Dy+1
==> //    Dzz=z*Dz+1
IF;
==> IF[1]=-y^3-x^2+t(1)
==> IF[2]=t(2)-z
==> IF[3]=2*x*Dt(1)+Dx
==> IF[4]=3*y^2*Dt(1)+Dy
==> IF[5]=Dt(2)+Dz
 | 
 |