|  |  A.3.11 Kernel of module homomorphisms 
Let 
 ,  be two matrices of size  and  over the ring  and consider the corresponding maps 
 We want to compute the kernel of the map
  This can be done using the modulocommand:
 More precisely, the output of
 modulo(A,B)is amodulesuch that the given generatingvectors span the kernel on the
right-hand side.
 |  |   ring r=0,(x,y,z),(c,dp);
  matrix A[2][2]=x,y,z,1;
  matrix B[2][2]=x2,y2,z2,xz;
  print(B);
==> x2,y2,
==> z2,xz 
  def C=modulo(A,B);
  print(C);            // matrix of generators for the kernel
==> yz2-x2, xyz-y2,  x2z-xy, x3-y2z,
==> x2z-xz2,-x2z+y2z,xyz-yz2,0      
  print(A*matrix(C));  // should be in Im(B)
==> x2yz-x3,y3z-xy2, x3z+xy2z-y2z2-x2y,x4-xy2z,
==> yz3-xz2,xyz2-x2z,x2z2-yz2,         x3z-y2z2
 | 
 
 |