
The Singular 'Resolution of Singularities'

Pakage:

Getting started

Anne Fr�uhbis-Kr�uger

FB Mathematik

Universit�at Kaiserslautern,

67653 Kaiserslautern, Germany

July 1, 2005

1 Installation

If Singular is not installed on your (UNIX-type) omputer, ask your system

administrator to download and install it (version � 2.0.6) on your omputer.

Also ask for the installation of the additional pakages surf and graphviz whih

are used for produing graphial output, but are not part of the Singular

distribution. If all this is already installed on your omputer, you are ready to

start.

2 Working with the 'resol.lib' Pakage

2.1 First Steps

The �rst step is starting Singular for interative use by speifying the om-

mand Singular at the system prompt of the omputer. Singular then starts

with a message like

SINGULAR /

A Computer Algebra System for Polynomial Computations / version 2-0-6

0<

by: G.-M. Greuel, G. Pfister, H. Shoenemann \ Deember 2004

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

where, of ourse, the version number and month and year might be di�erent.

On the next line the system then awaits input; to indiate this, the harater

> is displayed at the beginning of the line.

Before we an start using the resolution of singularities pakage, we need to

load it:

1



LIB"resolve.lib"; // load the resolution algorithm

LIB"reszeta.lib"; // load its appliation algorithms

LIB"resgraph.lib"; // load the graphial output routines

Here the ontent of the line following the haraters '//' is a omment. It an

be omitted from the input; it is only spei�ed here to explain the orresponding

line to the reader.

Now, we are ready to use the resolution pakage. Currently, the objet to be

resolved an only be spei�ed by means of an ideal ontained in an aÆne hart.

Let us illustrate this using the A

6

-singularity as an example:

ring R=0,(x,y,z),dp; // define the ring Q[x,y,z℄

ideal I=x7+y2-z2; // an A6 surfae singularity

To atually ompute a resolution of singularities, we use the ommand

resolve:

list L=resolve(I); // ompute the resolution

Sine omputation of the resolution might take quite some time, there is the

possibility to view some debug output during the resolution by speifying an

additional seond parameter '1':

list L=resolve(I,1); // ompute the resolution in debug mode

At the same time this debug mode will perform additional sanity heks whih

only serve debug purposes and might slow down the algorithm. (In future

releases, there will be a swith to only produe output without running in debug-

mode.) If the user would like to stop at eah blow-up step, the optional seond

argument may be set to '32'. In both ases, the debug output will be of the

following form (the text after the '//' is just a omment whih does not appear

in the output):

.

.

.

++++++++++++++ BO +++++++++++++++++++++++

3 //

9 // debugging information: progress

8 //

+++++++++++++++++++++++++++++++++++++++++++++++

==== W:

_[1℄=0 // ideal of ambient spae

==== J:

_[1℄=x(3)*y(1)^2-x(3)-y(2) // ideal of strit transform

==== E:

[1℄:

2



_[1℄=1 // strit transform of first ex. div.

[2℄:

_[1℄=1 // strit transform of seond one

[3℄:

_[1℄=y(2) // strit transform of third one

[4℄:

_[1℄=x(3) // newborn exeptional divisor

==== Intersetion

0,1,0,0, // debugging information

0,0,1,0,

0,0,0,1,

0,0,0,0

------- Center ------------

_[1℄=y(2) // enter for upoming blow-up

_[2℄=x(3) //

----------------------------

.

.

.

When onsidering this output, it is important to observe that information is

printed out for eah hart ourring in the resolution proess. In partiular,

not all exeptional divisors are, in general, present in a given hart; e.g. the

exeptional divisors one and two in the above example did appear in an anestor

of the urrent hart, but they do not meet the urrent one. It may also our

that the total number of exeptional divisors arising in the whole resolution

proess is higher than the highest number of exeptional divisors in any of the

harts.

As soon as the system �nished omputing the tree of harts of the resolution

proess, we an start identifying the exeptional divisors in the various harts:

list oll=olletDiv(L); // identify the divisors

oll; // show the output

[1℄:

0,0,0,0,0,

1,0,0,0,0,

1,0,0,0,0,

1,2,0,0,0,

0,2,0,0,0,

0,2,3,0,0,

0,0,3,0,0,

0,0,3,4,0,

0,0,3,4,0,

0,0,0,4,5,

0,0,3,0,5,

0,0,0,4,5,

3



0,0,3,0,5

[2℄:

[1℄:

[1℄:

2,1

[2℄:

3,1

[3℄:

4,1

.

.

.

The output of this ommand is a list, whose �rst entry is a matrix with integer

entries. The entry k in the i-th row and j-th olumn of this matrix identi�es the

j-th divisor (if it is visible in the hart) in the history of the i-th hart as the

exeeptional divisor numbered by k. The other output data is explained in the

online-help for the ommand.

We an also draw the tree of harts:

ResTree(L,oll[1℄); // draw tree of harts

In a di�erent window, the image 1 is produed:

Figure 1: Tree of harts of the resolution of an A

6

surfae singularity as om-

puted by the implemented algorithm. Eah of the boxes represents one hart,

the list 'E' spei�es the exeptional divisors visible in this hart in the order in

whih they arose. The lines onneting the boxes represent a blow-up linking

the hart ontaining the enter to the new harts, the number 'd' spei�es the

dimension of the enter of this blow-up.

4



2.2 Aessing the Resolution Data

The list whih is returned by the ommand resolve ontains all harts whih

were reated during the resolution proess. These harts an be aessed in the

following way:

def Chart8=L[2℄[8℄; // assign name Chart8 to the 8th hart

setring Chart8; // aess Chart8

BO; // look at the objet in detail

The last ommand produes the following output:

[1℄:

_[1℄=0 // ideal of the ambient spae

[2℄:

_[1℄=x(3)*y(1)^2-x(3)-y(2) // ideal of the strit transform

[3℄:

1,1 // internal data

[4℄:

[1℄:

_[1℄=1 // strit transform of 1st ex. div.

[2℄:

_[1℄=1 // strit transform of 2nd one

[3℄:

_[1℄=y(2) // strit transform of 3rd one

[4℄:

_[1℄=x(3) // newborn exeptional divisor

[5℄: // ideal desribing sequene of blow-ups

_[1℄=x(3)*y(2) // image of 1st variable of orig. hart

_[2℄=x(3)^4*y(2)^3 // image of 2nd variable of orig. hart

_[3℄=x(3)^4*y(1)*y(2)^3 // image of 3rd variable of orig. hart

[6℄:

1,1,0,0 // internal data

[7℄:

3,-1 // internal data

[8℄: // internal data

_[1,1℄=0

_[1,2℄=1

_[1,3℄=0

_[1,4℄=0

5



_[2,1℄=0

_[2,2℄=0

_[2,3℄=1

_[2,4℄=0

_[3,1℄=0

_[3,2℄=0

_[3,3℄=0

_[3,4℄=1

_[4,1℄=0

_[4,2℄=0

_[4,3℄=0

_[4,4℄=0

[9℄: // internal data

1,1

Additionally there is some more information enoded in this hart. The ideal

lastMap spei�es the images of the variables of the parent hart under the last

blow-up; the ideal ent desribes the enter of the upoming blow-up. The

matrix path enodes the history of the resolution proess leading to this hart:

0, 1,3,5,7,

-1,2,2,2,1

The last olumn spei�es that this hart is the �rst one of the blow-up of hart

7 in the enter spei�ed there; hart 7 in turn arose as the seond hart from

the blow-up of hart 5 aording to the seond olumn from the right. The �rst

olumn is only there for tehnial reasons, it does not have any meaning.

3 Working with the Appliations Pakage 'zeta.lib'

Currently, all appliations are only available for surfae singularities:

As a �rst appliation, we an ompute the intersetion matrix and genus of the

exeptional urves on the blown-up surfae:

list iD=intersetionDiv(L); // ompute intersetion properties

iD; // show the output

The output of this ommand is a list whose �rst entry ontains the intersetion

matrix of the exeptional divisors (eah being a C {irreduible urve) and the

seond entry is the list of genera of these divisors. The third and fourth entry

help identifying the orresponding divisors in the respetive harts:

[1℄:

-2,0,1,0,0,0, // intersetion matrix

0,-2,0,1,0,0,

1,0,-2,0,1,0,

6



0,1,0,-2,0,1,

0,0,1,0,-2,1,

0,0,0,1,1,-2

[2℄:

0,0,0,0,0,0 // genera

[3℄:

[1℄: // first exeptional divisor

[1℄: // an be found in

2,1,1 // hart 2: BO[4℄[1℄, first omponent

[2℄:

4,1,1 // hart 4: BO[4℄[1℄, first omponent

[2℄: // seond exeptional divisor

[1℄: // an be found in

2,1,2 // hart 2: BO[4℄[1℄, seond omponent

[2℄:

4,1,2 // hart 4: BO[4℄[1℄, seond omponent

[3℄: // third exeptional divisor

[1℄: // ...

4,2,1

[2℄:

6,2,1

[4℄:

[1℄:

4,2,2

[2℄:

6,2,2

[5℄:

[1℄:

6,3,1

[2℄:

7,3,1

[6℄:

[1℄:

6,3,2

[2℄:

7,3,2

[4℄:

1,1,1,1,1,1 // number of C-omponents of eah

// Q-omponent listed in entry [3℄

// (C omplex numbers, Q rationals)

Given these data we are able to display the dual graph of the resolution:

InterDiv(iD[1℄); // draw dual graph of resolution

7



Caution! This feature is still in its testing phase. It might still undergo signi�-

ant hanges!

For people who would like to see nie pitures, we an also draw the �nal

harts:

finalCharts(L,iD,abstratR(L)[1℄); // draw pitures of the final harts

The graphial output is not always absolutely orret due to the fat that the im-

ages are produed by means of a ray-traer whih prepares the images symboli-

numerially.

As a last set of appliations, we an ompute the negative spetral numbers

and the (loal and global) Denef-Loeser zeta funtion for the given singularity:

spetralNeg(L); // negative spetral numbers

zetaDL(L,1); // global zeta funtion for d=1

zetaDL(L,2); // global zeta funtion for d=2

zetaDL(L,1,"loal"); // loal zeta funtion for d=1

Of ourse, there are no negative spetral numbers in this very simple example.

The global and loal zeta funtion (type of return value: string) oinide for

isolated singularities. But this is only a syntax example anyway.

8


