next up previous contents
Next: 4.4 Module intersection 2 Up: 4. Syzygies Previous: 4.2 Resolutions

4.3 Kernel of a module homomorphism

Definition 4..4   Let $\;R=K[x_1,\ldots , x_n]/(h_1,\ldots , h_p)\;$, $\;A
\in Mat(m\times r,R)\;$ and $B\in Mat(m\times s,R)\;$ then define

\begin{displaymath}{\bf modulo(A,B)}:= ker( R^r\stackrel{A}{\longrightarrow} R^m/Im(B)) \end{displaymath}

( modulo(A,B) is the preimage of B under the homomorphism given by A.)

Lemma 4..5   Let $\;\{\, (\underline{\alpha}_i
,\underline{\beta}_i ,\underline{\gamma}_i )\,\vert\;i=1,\ldots , k\,\}\subset
R^{r+s+p}=:R^N\;$ be a generating set of syz(D) where

\begin{displaymath}C=\left(
\begin{array}{ccccccccc}
h_1 & \cdots & h_p & 0 & \c...
...1 & \cdots & h_p \\
\end{array}\right) \in Mat(m\times pm,R)
\end{displaymath}

and

\begin{displaymath}D= \left(
\begin{array}{ccc\vert ccc\vert ccc}
a_{11} & \cdot...
...s & c_{m,pm} \\
\end{array}\right) \in Mat(m\times r+s+pm,R)
\end{displaymath}

Then

\begin{displaymath}modulo\,(A,B):=(\,\alpha_1\ldots \alpha_k\,)\in Mat(r\times k,R) \end{displaymath}

(see lemma 4.2.)

Remark 4..6   In practice, one need not compute the entire syzygy module of D: it is better to find modulo(A,B) as:

\begin{displaymath}\left(
\begin{array}{ccc\vert ccc\vert ccc}
a_{11} & \cdots &...
...c}
0\\
\vdots \\
0\\
R\\
\vdots\\
R\\
\end{array}\right)
\end{displaymath}

(see sections 4.2, 2.7.)



| ZCA Home | Reports |