next up previous contents
Next: 5.3 TX and TX(M) Up: 5. Examples Previous: 5.1 Ext modules Ext(M,R)

5.2 HomR(M,N)

Let M be given as Rm/Im(A0), N as Rp/Im(B0), where $R=K[x_1,\ldots , x_n]/(h_1,\ldots
, h_p)\,$ together with free resolutions

\begin{displaymath}\ldots \longrightarrow F_k \stackrel{A_{k-1}}{\longrightarrow...
...}{\longrightarrow} F_0=R^m \longrightarrow M \longrightarrow 0
\end{displaymath}

and

\begin{displaymath}\ldots \longrightarrow G_k \stackrel{B_{k-1}}{\longrightarrow...
...{\longrightarrow} G_0=R^p \longrightarrow N \longrightarrow 0
.\end{displaymath}

We get the following commutative diagram with exact columns and rows:

\begin{displaymath}\begin{array}{ccccccccc}
& & 0 & \\
& & \downarrow & \\
& &...
...&
\longleftarrow & F_1^{\ast } \otimes G_1 \\
\par\end{array}\end{displaymath}


.

Algorithm 5..2  

\begin{displaymath}Hom_R(M,N)= Im\,(modulo\,(A_0^T \otimes id_{G_0},\,id_{F_1^{\ast}}
\otimes B_0))\,/\:Im\,(id_{F_0^{\ast }}\otimes B_0) \end{displaymath}

is a free module modulo the image of the matrix

\begin{displaymath}modulo\,(modulo\,(A_0^T \otimes id_{G_0},\,id_{F_1^{\ast}}
\otimes B_0)\,,\:id_{F_0^{\ast }}\otimes B_0) \end{displaymath}




| ZCA Home | Reports |