next up previous contents
Next: 2.1 Definition Up: Algorithms in Singular Previous: 1.2 Examples for monomial

2. Standard bases

Definition 2..1   We define ${\bf Loc_< K[\underline{x}]}:= S^{-1}_< K[\underline{x}]$ to be the localization of $K[\underline{x}]$ with respect to the multiplicative closed set $S_< =
\{1 + g \mid g = 0$ or $g \in K[\underline{x}] \backslash \{ 0\}$ and $1 > L(g)\}$.

Remark 2..2  
1)
$K[\underline{x}] \subseteq \mbox{Loc}_< K[\underline{x}] \subseteq K[\underline{x}]_{(\underline{x})}$, where $K[\underline{x}]_{(\underline{x})}$ denotes the localization of $K[\underline{x}]$ with respect to the maximal ideal $(x_1, \ldots, x_n)$. In particular, $\mbox{Loc}_< K[\underline{x}]$ is noetherian, Loc $_< K[\underline{x}]$ is $K[\underline{x}]$-flat and $K[\underline{x}]_{(\underline{x})}$ is Loc $_< K[\underline{x}]$-flat.

2)
If < is a wellordering then x0 = 1 is the smallest monomial and Loc $_< K[\underline{x}] = K[\underline{x}]$ . If 1 > xi for all i, then Loc $_< K[\underline{x}] = K[\underline{x}]_{(\underline{x})}$.

3)
If, in general, $x_1, \ldots, x_r < 1$ and $x_{r+1}, \ldots, x_n >
1$ then

\begin{displaymath}1 + (x_1, \ldots, x_r) K[x_1, \ldots, x_r]\; \subseteq\; S_< \;\subseteq\; 1
+ (x_1, \ldots, x_r) K[\underline{x}] =: S,
\end{displaymath}

hence

\begin{displaymath}K[x_1, \ldots, x_r]_{(x_1, \ldots, x_r)} [x_{r+1}, \ldots, x_...
...Loc}_< K[\underline{x}] \;\subseteq\; S^{-1} K[\underline{x}].
\end{displaymath}



 

| ZCA Home | Reports |