source: git/gfanlib/gfanlib_zcone.h

spielwiese
Last change on this file was 1e1990, checked in by Frédéric Chapoton <chapoton@…>, 17 months ago
fixing various typos (found using egrep)
  • Property mode set to 100644
File size: 14.2 KB
Line 
1/*
2 * lib_cone.h
3 *
4 *  Created on: Sep 28, 2010
5 *      Author: anders
6 */
7
8#ifndef LIB_CONE_H_
9#define LIB_CONE_H_
10
11#include "../factory/globaldefs.h"
12#include "gfanlib_matrix.h"
13
14namespace gfan{
15/**
16 * Returns true if cddlib is needed for the ZCone implementation.
17 */
18        bool isCddlibRequired();
19        /**
20         * Only call this function if gfanlib is the only code in your program using cddlib.
21         * Should be paired with a deinitializeCddlibIfRequired() call.
22         * Calling the function repeatedly may cause memory leaks even if deinitializeCddlibIfRequired() is also called.
23         */
24        void initializeCddlibIfRequired();
25        /**
26         * This function may do nothing.
27         */
28        void deinitializeCddlibIfRequired();
29
30/**
31A PolyhedralCone is represented by linear inequalities and equations. The inequalities are non-strict
32and stored as the rows of a matrix and the equations are stored as rows of a second matrix.
33
34A cone can be in one of the four states:
350) Nothing has been done to remove redundancies. This is the initial state.
361) A basis for the true, implied equations space has been computed. This means that
37   the implied equations have been computed. In particular the dimension of the cone is known.
382) Redundant inequalities have been computed and have been eliminated.
39   This means that the true set of facets is known - one for each element in halfSpaces.
403) The inequalities and equations from 2) have been transformed into a canonical form. Besides having
41   a unique representation for the cone this also allows comparisons between cones with operator<().
42
43Since moving for one state to the next is expensive, the user of the PolyhedralCone can specify flags
44at the construction of the cone informing about which things are known.
45
46PCP_impliedEquationsKnown means that the given set of equations generate the space of implied equations.
47PCP_facetsKnown means that each inequalities describe define a (different) facet of the cone.
48
49Each cone has the additional information: multiplicity and linear forms.
50The multiplicity is an integer whose default value is one. It can be set by the user.
51When a cone is projected, it can happen that the multiplicity changes according to a lattice index.
52The linear forms are stored in a matrix linearForms, whose width equals the dimension of the ambient space.
53The idea is that a collection of cones in this way can represent a piecewise linear function (a tropical rational function).
54
55Caching:
56When new properties are computed by changing state the information is stored in the object by updating equations and inequalities.
57When some other properties are computed, such as rays the result is cached in the object. Each cached property has a corresponding flag telling if a cached value has been stored.
58These methods
59for these properties are considered const. Caching only works for extreme rays at the moment.
60
61Notice:
62The lineality space of a cone C is C\cap(-C).
63A cone is ray if its dimension is 1+the dimension of the its lineality space.
64
65Should the user of this class know about the states?
66
67need to think about this...
68Always putting the cone in state 1 after something has changed helps a lot.
69Then all operations can be performed except comparing and getting facets with
70out taking the cone to a special state.
71
72
73Things to change:
74- Thomas wants operations where the natural description is the dual to be fast.
75  One way to achieve this is as Frank suggests to have a state -1, in which only
76  the generator description is known. These should be stored in the cache. If it
77  is required to move to state 0, then the inequality description is computed.
78  This sounds like a reasonable solution, but of course, what we are really storing is the dual.
79
80 - Basically all data in the object should be mutable, while almost every method should be const.
81
82 - A method should set the cone in a given state if required. The reason for this is that
83   it will be difficult for the user to figure out which state is required and therefore
84   will tend to call canonicalize when not needed.
85
86 - Cache should be added for more properties.
87
88Optimization:
89- When inequalities can be represented in 32 bit some optimizations can be done.
90
91More things to consider:
92- Does it make sense to do dimension reduction when lineality space / linear span has been
93  computed?
94
95
96When calling generated by rays, two flags should be passed.
97
98 */
99
100enum PolyhedralConePreassumptions{
101  PCP_none=0,
102  PCP_impliedEquationsKnown=1,
103  PCP_facetsKnown=2
104};
105
106class ZCone;
107ZCone intersection(const ZCone &a, const ZCone &b);
108class ZCone
109{
110  int preassumptions;
111  mutable int state;
112  int n;
113  Integer multiplicity;
114  ZMatrix linearForms;
115  mutable ZMatrix inequalities;
116  mutable ZMatrix equations;
117  mutable ZMatrix cachedExtremeRays;
118/**
119 * If this bool is true it means that cachedExtremeRays contains the extreme rays as found by extremeRays().
120 */
121  mutable bool haveExtremeRaysBeenCached;
122  void ensureStateAsMinimum(int s)const;
123
124  bool isInStateMinimum(int s)const;
125  int getState()const;
126public:
127   /**
128    * Constructs a polyhedral cone with specified equations and inequalities. They are read off as rows
129    * of the matrices. For efficiency it is possible to specify a PolyhedralConePreassumptions flag
130    * which tells what is known about the description already.
131    */
132     ZCone(ZMatrix const &inequalities_, ZMatrix const &equations_, int preassumptions_=PCP_none);
133
134     /**
135      * Get the multiplicity of the cone.
136      */
137     Integer getMultiplicity()const;
138     /**
139      * Set the multiplicity of the cone.
140      */
141     void setMultiplicity(Integer const &m);
142     /**
143      * Returns the matrix of linear forms stored in the cone object.
144      */
145     ZMatrix getLinearForms()const;
146     /**
147      * Store a matrix of linear forms in the cone object.
148      */
149     void setLinearForms(ZMatrix const &linearForms_);
150
151     /**
152      * Get the inequalities in the description of the cone.
153      */
154     ZMatrix getInequalities()const;
155     /**
156      * Get the equations in the description of the cone.
157      */
158     ZMatrix getEquations()const;
159     /**
160      * Compute generators of the span of the cone. They are stored as rows of the returned matrix.
161      */
162     ZMatrix generatorsOfSpan()const;
163     /**
164      * Compute generators of the lineality space of the cone. The returned set of generators is a vector spaces basis. They are stored as rows of the returned matrix.
165      */
166     ZMatrix generatorsOfLinealitySpace()const;
167     /**
168      * Returns true iff it is known that every inequalities in the description defines a different facets of the cone.
169      */
170     bool areFacetsKnown()const{return (state>=2)||(preassumptions&PCP_facetsKnown);}
171     /**
172      * Returns true iff it is known that the set of equations span the space of implied equations of the description.
173      */
174     bool areImpliedEquationsKnown()const{return (state>=1)||(preassumptions&PCP_impliedEquationsKnown);}
175     /**
176      * Returns true iff the extreme rays are known.
177      */
178     bool areExtremeRaysKnown()const{return haveExtremeRaysBeenCached;}
179
180     /**
181      * Takes the cone to a canonical form. After taking cones to canonical form, two cones are the same
182      * if and only if their matrices of equations and inequalities are the same.
183      */
184     void canonicalize();
185     /**
186      * Computes and returns the facet inequalities of the cone.
187      */
188     ZMatrix getFacets()const;
189     /**
190      * After this function has been called all inequalities describe different facets of the cone.
191      */
192     void findFacets();
193     /**
194      * The set of linear forms vanishing on the cone is a subspace. This routine returns a basis
195      * of this subspace as the rows of a matrix.
196      */
197     ZMatrix getImpliedEquations()const;
198     /**
199      * After this function has been called a minimal set of implied equations for the cone is known and is
200      * returned when calling getEquations(). The returned equations form a basis of the space of implied
201      * equations.
202      */
203     void findImpliedEquations();
204
205     /**
206      * Constructor for polyhedral cone with no inequalities or equations. Tthat is, the full space of some dimension.
207      */
208     ZCone(int ambientDimension=0);
209
210     /**
211      * Computes are relative interior point of the cone.
212      */
213     ZVector getRelativeInteriorPoint()const;
214  /**
215     Assuming that this cone C is in state at least 3 (why not 2?), this routine returns a relative interior point v(C) of C with the following properties:
216     1) v is a function, that is v(C) is found deterministically
217     2) for any angle preserving, lattice preserving and lineality space preserving transformation T of R^n we have that v(T(C))=T(v(C)). This makes it easy to check if two cones in the same fan are equal up to symmetry. Here preserving the lineality space L just means T(L)=L.
218  */
219     ZVector getUniquePoint()const;
220  /**
221   * Takes a list of possible extreme rays and add up those actually contained in the cone.
222   */
223     ZVector getUniquePointFromExtremeRays(ZMatrix const &extremeRays)const;
224     /**
225      * Returns the dimension of the ambient space.
226      */
227     int ambientDimension()const;
228     /**
229      * Returns the dimension of the cone.
230      */
231     int dimension()const;
232     /**
233      * Returns (ambient dimension)-(dimension).
234      */
235     int codimension()const;
236     /**
237      * Returns the dimension of the lineality space of the cone.
238      */
239     int dimensionOfLinealitySpace()const;
240     /**
241      * Returns true iff the cone is the origin.
242      */
243     bool isOrigin()const;
244     /**
245      * Returns true iff the cone is the full space.
246      */
247     bool isFullSpace()const;
248
249     /**
250      * Returns the intersection of cone a and b as a cone object.
251      */
252     friend ZCone intersection(const ZCone &a, const ZCone &b);
253     /**
254      * Returns the Cartesian product of the two cones a and b.
255      */
256     friend ZCone product(const ZCone &a, const ZCone &b);
257     /**
258      * Returns the positive orthant of some dimension as a polyhedral cone.
259      */
260     static ZCone positiveOrthant(int dimension);
261     /**
262      * Returns the cone which is the sum of row span of linealitySpace and
263      * the non-negative span of the rows of generators.
264      */
265     static ZCone givenByRays(ZMatrix const &generators, ZMatrix const &linealitySpace);
266
267     /**
268      * To use the comparison operator< the cones must have been canonicalized.
269      */
270     friend bool operator<(ZCone const &a, ZCone const &b);
271     /**
272      * To use the comparison operator!= the cones must have been canonicalized.
273      */
274     friend bool operator!=(ZCone const &a, ZCone const &b);
275
276     /**
277      * Returns true iff the cone contains a positive vector.
278      */
279     bool containsPositiveVector()const;
280     /**
281      * Returns true iff the cone contains the specified vector v.
282      */
283     bool contains(ZVector const &v)const;
284     /**
285      * Returns true iff the cone contains all rows of the matrix l.
286      */
287     bool containsRowsOf(ZMatrix const &l)const;
288     /**
289      * Returns true iff c is contained in the cone.
290      */
291     bool contains(ZCone const &c)const;
292     /**
293      * Returns true iff the PolyhedralCone contains v in its relative interior. False otherwise. The cone must be in state at least 1.
294      */
295     bool containsRelatively(ZVector const &v)const;
296     /*
297      * Returns true iff the cone is simplicial. That is, iff the dimension of the cone equals the number of facets.
298      */
299     bool isSimplicial()const;
300
301     //PolyhedralCone permuted(IntegerVector const &v)const;
302
303     /**
304      * Returns the lineality space of the cone as a polyhedral cone.
305      */
306     ZCone linealitySpace()const;
307
308     /**
309      * Returns the dual cone of the cone.
310      */
311     ZCone dualCone()const;
312     /**
313      * Return -C, where C is the cone.
314      */
315     ZCone negated()const;
316     /**
317      * Compute the extreme rays of the cone, and return generators of these as the rows of a matrix.
318      * The returned extreme rays are represented by vectors which are orthogonal to the lineality
319      * space and which are primitive primitive.
320      * This makes them unique and invariant under lattice and angle preserving linear transformations
321      * in the sense that a transformed cone would give the same set of extreme rays except the
322      * extreme rays have been transformed.
323      * If generators for the lineality space are known, they can be supplied. This can
324      * speed up computations a lot.
325      */
326    ZMatrix extremeRays(ZMatrix const *generatorsOfLinealitySpace=0)const;
327    /**
328       The cone defines two lattices, namely Z^n intersected with the
329       span of the cone and Z^n intersected with the lineality space of
330       the cone. Clearly the second is contained in the
331       first. Furthermore, the second is a saturated lattice of the
332       first. The quotient is torsion-free - hence a lattice. Generators
333       of this lattice as vectors in the span of the cone are computed
334       by this routine. The implied equations must be known when this
335       function is called - if not the routine asserts.
336     */
337    ZMatrix quotientLatticeBasis()const;
338    /**
339       For a ray (dim=linealitydim +1)
340       the quotent lattice described in quotientLatticeBasis() is
341       isomorphic to Z. In fact the ray intersected with Z^n modulo the
342       lineality space intersected with Z^n is a semigroup generated by
343       just one element. This routine computes that element as an
344       integer vector in the cone. Asserts if the cone is not a ray.
345       Asserts if the implied equations have not been computed.
346     */
347    ZVector semiGroupGeneratorOfRay()const;
348
349    /**
350       Computes the link of the face containing v in its relative
351       interior.
352     */
353    ZCone link(ZVector const &w)const;
354
355    /**
356       Tests if f is a face of the cone.
357     */
358    bool hasFace(ZCone const &f)const;
359    /**
360       Computes the face of the cone containing v in its relative interior.
361       The vector MUST be contained in the cone.
362    */
363    ZCone faceContaining(ZVector const &v)const;
364    /**
365     * Computes the projection of the cone to the first newn coordinates.
366     * The ambient space of the returned cone has dimension newn.
367     */
368    // PolyhedralCone projection(int newn)const;
369    friend std::ostream &operator<<(std::ostream &f, ZCone const &c);
370    std::string toString()const;
371};
372
373}
374
375
376
377
378#endif /* LIB_CONE_H_ */
Note: See TracBrowser for help on using the repository browser.