source: git/libpolys/coeffs/coeffs.h @ e676cd

fieker-DuValspielwiese
Last change on this file since e676cd was e676cd, checked in by Oleksandr Motsak <motsak@…>, 13 years ago
FIX: Doxygen style comments
  • Property mode set to 100644
File size: 18.8 KB
Line 
1#ifndef COEFFS_H
2#define COEFFS_H
3/****************************************
4*  Computer Algebra System SINGULAR     *
5****************************************/
6/* $Id$ */
7/*
8* ABSTRACT
9*/
10
11#include <misc/auxiliary.h>
12/* for assume: */
13#include <reporter/reporter.h>
14
15#include <coeffs/si_gmp.h>
16
17#ifdef HAVE_FACTORY
18class CanonicalForm;
19#endif
20
21enum n_coeffType
22{
23  n_unknown=0,
24  n_Zp,
25  n_Q,
26  n_R,
27  n_GF,
28  n_long_R,
29  n_algExt,  /**< used for all algebraic extensions, i.e.,
30                the top-most extension in an extension tower
31                is algebraic */
32  n_transExt,  /**< used for all transcendental extensions, i.e.,
33                  the top-most extension in an extension tower
34                  is transcendental */
35  n_long_C,
36  // only used if HAVE_RINGS is defined:
37  n_Z,
38  n_Zn,
39  n_Zpn, // does no longer exist?
40  n_Z2m,
41  n_CF
42};
43
44struct snumber;
45typedef struct snumber *   number;
46
47struct snumber;
48typedef struct snumber *   number;
49
50/* standard types */
51#ifdef HAVE_RINGS
52typedef unsigned long NATNUMBER;
53typedef mpz_ptr int_number;
54#endif
55
56struct ip_sring;
57typedef struct ip_sring *         ring;
58
59struct n_Procs_s;
60typedef struct  n_Procs_s  n_Procs_s;
61typedef struct  n_Procs_s  *coeffs;
62
63typedef number (*numberfunc)(number a, number b, const coeffs r);
64
65/// maps "a", which lives in src, into dst
66typedef number (*nMapFunc)(number a, const coeffs src, const coeffs dst);
67
68struct n_Procs_s
69{
70   coeffs next;
71   unsigned int ringtype;  /* =0 => coefficient field,
72                             !=0 => coeffs from one of the rings:
73                              =1 => Z/2^mZ
74                              =2 => Z/nZ, n not a prime
75                              =3 => Z/p^mZ
76                              =4 => Z */
77
78   // general properties:
79   /// TRUE, if nNew/nDelete/nCopy are dummies
80   BOOLEAN has_simple_Alloc;
81   /// TRUE, if std should make polynomials monic (if nInvers is cheap)
82   /// if false, then a gcd routine is used for a content computation
83   BOOLEAN has_simple_Inverse;
84
85   // tests for numbers.cc:
86   BOOLEAN (*nCoeffIsEqual)(const coeffs r, n_coeffType n, void * parameter);
87
88   /// output of coeff description via Print
89   void (*cfCoeffWrite)(const coeffs r);
90
91   // the union stuff
92
93   // Zp:
94   int npPrimeM;
95   int npPminus1M;
96   #ifdef HAVE_DIV_MOD
97   unsigned short *npInvTable;
98   #endif
99   #if !defined(HAVE_DIV_MOD) || !defined(HAVE_MULT_MOD)
100   unsigned short *npExpTable;
101   unsigned short *npLogTable;
102   #endif
103
104   // ?
105   // initialisation:
106   //void (*cfInitChar)(coeffs r, int parameter); // do one-time initialisations
107   void (*cfKillChar)(coeffs r); //  undo all initialisations
108                                // or NULL
109   void (*cfSetChar)(const coeffs r); // initialisations after each ring change
110                                // or NULL
111   // general stuff
112   numberfunc cfMult, cfSub ,cfAdd ,cfDiv, cfIntDiv, cfIntMod, cfExactDiv;
113   /// init with an integer
114   number  (*cfInit)(int i,const coeffs r);
115   number  (*cfPar)(int i, const coeffs r);
116   int     (*cfParDeg)(number n, const coeffs r);
117   /// how complicated, (0) => 0, or positive
118   int     (*cfSize)(number n, const coeffs r);
119   /// convertion, 0 if impossible
120   int     (*cfInt)(number &n, const coeffs r);
121
122#ifdef HAVE_RINGS
123   int     (*cfDivComp)(number a,number b,const coeffs r);
124   BOOLEAN (*cfIsUnit)(number a,const coeffs r);
125   number  (*cfGetUnit)(number a,const coeffs r);
126   number  (*cfExtGcd)(number a, number b, number *s, number *t,const coeffs r);
127#endif
128
129   /// changes argument  inline: a:= -a
130   number  (*cfNeg)(number a, const coeffs r);
131   /// return 1/a
132   number  (*cfInvers)(number a, const coeffs r);
133   /// return a copy of a
134   number  (*cfCopy)(number a, const coeffs r);
135   number  (*cfRePart)(number a, const coeffs r);
136   number  (*cfImPart)(number a, const coeffs r);
137   void    (*cfWrite)(number &a, const coeffs r);
138   const char *  (*cfRead)(const char * s, number * a, const coeffs r);
139   void    (*cfNormalize)(number &a, const coeffs r);
140   BOOLEAN (*cfGreater)(number a,number b, const coeffs r),
141#ifdef HAVE_RINGS
142           (*cfDivBy)(number a, number b, const coeffs r),
143#endif
144            /// tests
145           (*cfEqual)(number a,number b, const coeffs r),
146           (*cfIsZero)(number a, const coeffs r),
147           (*cfIsOne)(number a, const coeffs r),
148           (*cfIsMOne)(number a, const coeffs r),
149           (*cfGreaterZero)(number a, const coeffs r);
150
151   void    (*cfPower)(number a, int i, number * result, const coeffs r);
152   number  (*cfGetDenom)(number &n, const coeffs r);
153   number  (*cfGetNumerator)(number &n, const coeffs r);
154   number  (*cfGcd)(number a, number b, const coeffs r);
155   number  (*cfLcm)(number a, number b, const coeffs r);
156   void    (*cfDelete)(number * a, const coeffs r);
157   nMapFunc (*cfSetMap)(const coeffs src, const coeffs dst);
158
159   /// For extensions (writes into global string buffer)
160   char *  (*cfName)(number n, const coeffs r);
161
162   /// Inplace: a *= b
163   void    (*cfInpMult)(number &a, number b, const coeffs r);
164   /// maps the bigint i (from dummy) into the coeffs dst
165   number  (*cfInit_bigint)(number i, const coeffs dummy, const coeffs dst);
166
167#ifdef HAVE_FACTORY
168   number (*convFactoryNSingN)( const CanonicalForm n, const coeffs r);
169   CanonicalForm (*convSingNFactoryN)( number n, BOOLEAN setChar, const coeffs r );
170#endif
171
172
173#ifdef LDEBUG
174   /// Test: is "a" a correct number?
175   BOOLEAN (*cfDBTest)(number a, const char *f, const int l, const coeffs r);
176#endif
177
178   number nNULL; /* the 0 as constant */
179   int     char_flag;
180   int     ref;
181   n_coeffType type;
182//-------------------------------------------
183
184  /// For Zp_a, Q_a we need polynomials (due to polys)
185  ring          algring; //< implementation of extensions needs polynomials...
186  // // for Q_a/Zp_a, rInit
187  //number     minpoly;  //< no longer needed: replaced by
188  //                     //<  algring->minideal->[0]
189
190
191//-------------------------------------------
192  char* complex_parameter; //< the name of sqrt(-1), i.e. 'i' or 'j' etc...?
193
194#ifdef HAVE_RINGS
195  /* The following members are for representing the ring Z/n,
196     where n is not a prime. We distinguish four cases:
197     1.) n has at least two distinct prime factors. Then
198         modBase stores n, modExponent stores 1, modNumber
199         stores n, and mod2mMask is not used;
200     2.) n = p^k for some odd prime p and k > 1. Then
201         modBase stores p, modExponent stores k, modNumber
202         stores n, and mod2mMask is not used;
203     3.) n = 2^k for some k > 1; moreover, 2^k - 1 fits in
204         an unsigned long. Then modBase stores 2, modExponent
205         stores k, modNumber is not used, and mod2mMask stores
206         2^k - 1, i.e., the bit mask '111..1' of length k.
207     4.) n = 2^k for some k > 1; but 2^k - 1 does not fit in
208         an unsigned long. Then modBase stores 2, modExponent
209         stores k, modNumber stores n, and mod2mMask is not
210         used;
211     Cases 1.), 2.), and 4.) are covered by the implementation
212     in the files rmodulon.h and rmodulon.cc, whereas case 3.)
213     is implemented in the files rmodulo2m.h and rmodulo2m.cc. */
214  int_number    modBase;
215  unsigned long modExponent;
216  int_number    modNumber;
217  unsigned long mod2mMask;
218#endif
219  int        ch;  /* characteristic, rInit
220                     PLEASE DOCUMENT HERE when this will be negative! */
221
222  short      float_len; /* additional char-flags, rInit */
223  short      float_len2; /* additional char-flags, rInit */
224
225  BOOLEAN   ShortOut; /// ffields need this.
226
227// ---------------------------------------------------
228  // for n_GF
229
230  int m_nfCharQ;  ///< the number of elemts: q
231  int m_nfM1;       ///< representation of -1
232  int m_nfCharP;  ///< the characteristic: p
233  int m_nfCharQ1; ///< q-1
234  unsigned short *m_nfPlus1Table;
235  int *m_nfMinPoly;
236  char * m_nfParameter;
237};
238//
239// test properties and type
240/// Returns the type of coeffs domain
241static inline n_coeffType getCoeffType(const coeffs r)
242{
243  assume(r != NULL);
244  return r->type;
245}
246
247static inline int nInternalChar(const coeffs r)
248{
249  assume(r != NULL);
250  return r->ch;
251}
252
253/// one-time initialisations for new coeffs
254/// in case of an error return NULL
255coeffs nInitChar(n_coeffType t, void * parameter);
256
257/// undo all initialisations
258void nKillChar(coeffs r);
259
260/// initialisations after each ring change
261static inline void nSetChar(const coeffs r)
262{
263  assume(r!=NULL); // r==NULL is an error
264  if (r->cfSetChar!=NULL) r->cfSetChar(r);
265}
266
267void           nNew(number * a);
268#define n_New(n, r)           nNew(n)
269
270
271// the access methods (part 2):
272
273/// return a copy of a
274static inline number n_Copy(number n,    const coeffs r)
275{   assume(r != NULL); assume(r->cfCopy!=NULL); return r->cfCopy(n, r); }
276
277static inline void   n_Delete(number* p, const coeffs r)
278{   assume(r != NULL); assume(r->cfDelete!= NULL); r->cfDelete(p, r); }
279
280static inline BOOLEAN n_Equal(number a, number b, const coeffs r)
281{ assume(r != NULL); assume(r->cfEqual!=NULL); return r->cfEqual(a, b, r); }
282
283static inline BOOLEAN n_IsZero(number n, const coeffs r)
284{ assume(r != NULL); assume(r->cfIsZero!=NULL); return r->cfIsZero(n,r); }
285
286static inline BOOLEAN n_IsOne(number n,  const coeffs r)
287{ assume(r != NULL); assume(r->cfIsOne!=NULL); return r->cfIsOne(n,r); }
288
289static inline BOOLEAN n_IsMOne(number n, const coeffs r)
290{ assume(r != NULL); assume(r->cfIsMOne!=NULL); return r->cfIsMOne(n,r); }
291
292static inline BOOLEAN n_GreaterZero(number n, const coeffs r)
293{ assume(r != NULL); assume(r->cfGreaterZero!=NULL); return r->cfGreaterZero(n,r); }
294static inline BOOLEAN n_Greater(number a, number b, const coeffs r)
295{ assume(r != NULL); assume(r->cfGreater!=NULL); return r->cfGreater(a,b,r); }
296
297#ifdef HAVE_RINGS
298static inline BOOLEAN n_IsUnit(number n, const coeffs r)
299{ assume(r != NULL); assume(r->cfIsUnit!=NULL); return r->cfIsUnit(n,r); }
300
301static inline number n_GetUnit(number n, const coeffs r)
302{ assume(r != NULL); assume(r->cfGetUnit!=NULL); return r->cfGetUnit(n,r); }
303
304static inline BOOLEAN n_DivBy(number a, number b, const coeffs r)
305{ assume(r != NULL); assume(r->cfDivBy!=NULL); return r->cfDivBy(a,b,r); }
306#endif
307
308/// init with an integer
309static inline number n_Init(int i,       const coeffs r)
310{ assume(r != NULL); assume(r->cfInit!=NULL); return r->cfInit(i,r); }
311
312/// conversion to int; 0 if not possible
313static inline int n_Int(number n,        const coeffs r)
314{ assume(r != NULL); assume(r->cfInt!=NULL); return r->cfInt(n,r); }
315
316/// changes argument  inline: a:= -a
317static inline number n_Neg(number n,     const coeffs r)
318{ assume(r != NULL); assume(r->cfNeg!=NULL); return r->cfNeg(n,r); }
319
320/// return 1/a
321static inline number n_Invers(number a,  const coeffs r)
322{ assume(r != NULL); assume(r->cfInvers!=NULL); return r->cfInvers(a,r); }
323
324/// use for pivot strategies, (0) => 0, otherwise positive
325static inline int    n_Size(number n,    const coeffs r)
326{ assume(r != NULL); assume(r->cfSize!=NULL); return r->cfSize(n,r); }
327
328/// normalize the number. i.e. go to some canonnical representation (inplace)
329static inline void   n_Normalize(number& n, const coeffs r)
330{ assume(r != NULL); assume(r->cfNormalize!=NULL); r->cfNormalize(n,r); }
331
332/// Normalize and Write to the output buffer of reporter
333static inline void   n_Write(number& n,  const coeffs r)
334{ assume(r != NULL); assume(r->cfWrite!=NULL); r->cfWrite(n,r); }
335
336/// Normalize and get denomerator
337static inline number n_GetDenom(number& n, const coeffs r)
338{ assume(r != NULL); assume(r->cfGetDenom!=NULL); return r->cfGetDenom(n, r); }
339
340/// Normalize and get numerator
341static inline number n_GetNumerator(number& n, const coeffs r)
342{ assume(r != NULL); assume(r->cfGetNumerator!=NULL); return r->cfGetNumerator(n, r); }
343
344static inline void   n_Power(number a, int b, number *res, const coeffs r)
345{ assume(r != NULL); assume(r->cfPower!=NULL); r->cfPower(a,b,res,r); }
346
347static inline number n_Mult(number a, number b, const coeffs r)
348{ assume(r != NULL); assume(r->cfMult!=NULL); return r->cfMult(a, b, r); }
349
350/// Inplace multiplication: a := a * b
351static inline void n_InpMult(number &a, number b, const coeffs r)
352{ assume(r != NULL); assume(r->cfInpMult!=NULL); r->cfInpMult(a,b,r); }
353
354static inline number n_Sub(number a, number b, const coeffs r)
355{ assume(r != NULL); assume(r->cfSub!=NULL); return r->cfSub(a, b, r); }
356
357static inline number n_Add(number a, number b, const coeffs r)
358{ assume(r != NULL); assume(r->cfAdd!=NULL); return r->cfAdd(a, b, r); }
359
360static inline number n_Div(number a, number b, const coeffs r)
361{ assume(r != NULL); assume(r->cfDiv!=NULL); return r->cfDiv(a,b,r); }
362
363static inline number n_IntDiv(number a, number b, const coeffs r)
364{ assume(r != NULL); assume(r->cfIntDiv!=NULL); return r->cfIntDiv(a,b,r); }
365
366static inline number n_ExactDiv(number a, number b, const coeffs r)
367{ assume(r != NULL); assume(r->cfExactDiv!=NULL); return r->cfExactDiv(a,b,r); }
368
369static inline number n_Gcd(number a, number b, const coeffs r)
370{ assume(r != NULL); assume(r->cfGcd!=NULL); return r->cfGcd(a,b,r); }
371
372static inline number n_Lcm(number a, number b, const coeffs r)
373{ assume(r != NULL); assume(r->cfLcm!=NULL); return r->cfLcm(a,b,r); }
374
375static inline nMapFunc n_SetMap(const coeffs src, const coeffs dst)
376{ assume(src != NULL && dst != NULL); assume(dst->cfSetMap!=NULL); return dst->cfSetMap(src,dst); }
377
378static inline number n_Par(int n, const coeffs r)
379{ assume(r != NULL); assume(r->cfPar!=NULL); return r->cfPar(n,r); }
380
381static inline int n_ParDeg(number n, const coeffs r)
382{ assume(r != NULL); assume(r->cfParDeg!=NULL); return r->cfParDeg(n,r); }
383
384/// Tests whether n is a correct number: only used if LDEBUG is defined
385static inline BOOLEAN n_DBTest(number n, const char *filename, const int linenumber, const coeffs r)
386{
387  assume(r != NULL); 
388#ifdef LDEBUG
389  assume(r->cfDBTest != NULL); 
390  return r->cfDBTest(n, filename, linenumber, r);
391#else
392  return TRUE;
393#endif
394}
395
396/// output the coeff description
397static inline void   n_CoeffWrite(const coeffs r)
398{ assume(r != NULL); assume(r->cfCoeffWrite != NULL); r->cfCoeffWrite(r); }
399
400// Tests:
401static inline BOOLEAN nCoeff_is_Ring_2toM(const coeffs r)
402{ assume(r != NULL); return (r->ringtype == 1); }
403
404static inline BOOLEAN nCoeff_is_Ring_ModN(const coeffs r)
405{ assume(r != NULL); return (r->ringtype == 2); }
406
407static inline BOOLEAN nCoeff_is_Ring_PtoM(const coeffs r)
408{ assume(r != NULL); return (r->ringtype == 3); }
409
410static inline BOOLEAN nCoeff_is_Ring_Z(const coeffs r)
411{ assume(r != NULL); return (r->ringtype == 4); }
412
413static inline BOOLEAN nCoeff_is_Ring(const coeffs r)
414{ assume(r != NULL); return (r->ringtype != 0); }
415
416/// returns TRUE, if r is not a field and r has no zero divisors (i.e is a domain)
417static inline BOOLEAN nCoeff_is_Domain(const coeffs r)
418{
419  assume(r != NULL); 
420#ifdef HAVE_RINGS
421  return (r->ringtype == 4 || r->ringtype == 0);
422#else
423  return TRUE;
424#endif
425}
426
427/// returns TRUE, if r is not a field and r has non-trivial units
428static inline BOOLEAN nCoeff_has_Units(const coeffs r)
429{ assume(r != NULL); return ((r->ringtype == 1) || (r->ringtype == 2) || (r->ringtype == 3)); }
430
431static inline BOOLEAN nCoeff_is_Zp(const coeffs r)
432{ assume(r != NULL); return getCoeffType(r)==n_Zp; }
433
434static inline BOOLEAN nCoeff_is_Zp(const coeffs r, int p)
435{ assume(r != NULL); return (getCoeffType(r)  && (r->ch == ABS(p))); }
436
437static inline BOOLEAN nCoeff_is_Q(const coeffs r)
438{ assume(r != NULL); return getCoeffType(r)==n_Q; }
439
440static inline BOOLEAN nCoeff_is_numeric(const coeffs r) /* R, long R, long C */
441{ assume(r != NULL);  return (getCoeffType(r)==n_R) || (getCoeffType(r)==n_long_R) || (getCoeffType(r)==n_long_C); }
442// (r->ringtype == 0) && (r->ch ==  -1); ??
443
444
445static inline BOOLEAN nCoeff_is_R(const coeffs r)
446{ assume(r != NULL); return getCoeffType(r)==n_R; }
447
448static inline BOOLEAN nCoeff_is_GF(const coeffs r)
449{ assume(r != NULL); return getCoeffType(r)==n_GF; }
450
451static inline BOOLEAN nCoeff_is_GF(const coeffs r, int q)
452{ assume(r != NULL); return (getCoeffType(r)==n_GF) && (r->ch == q); }
453
454/* TRUE iff an extension tower is build upon some Zp, i.e., the bottom
455   field in this tower is Zp */
456static inline BOOLEAN nCoeff_is_Zp_a(const coeffs r)
457{
458  assume(r != NULL);
459  return (r->ringtype == 0) &&
460         ((getCoeffType(r)==n_algExt) || (getCoeffType(r)==n_transExt)) &&
461         (r->ch < -1);
462}
463
464/* TRUE iff an extension tower is build upon Zp (p as provided), i.e.,
465   the bottom field in this tower is Zp */
466static inline BOOLEAN nCoeff_is_Zp_a(const coeffs r, int p)
467{
468  assume(r != NULL);
469  return (r->ringtype == 0) &&
470         ((getCoeffType(r)==n_algExt) || (getCoeffType(r)==n_transExt)) &&
471         (r->ch < -1 ) && (-(r->ch) == p);
472}
473
474/* TRUE iff an extension tower is build upon Q, i.e.,
475   the bottom field in this tower is Q */
476static inline BOOLEAN nCoeff_is_Q_a(const coeffs r)
477{
478  assume(r != NULL);
479  return (r->ringtype == 0) &&
480         ((getCoeffType(r)==n_algExt) || (getCoeffType(r)==n_transExt)) &&
481         (r->ch == 0);
482}
483
484static inline BOOLEAN nCoeff_is_long_R(const coeffs r)
485{ assume(r != NULL); return getCoeffType(r)==n_long_R; }
486
487static inline BOOLEAN nCoeff_is_long_C(const coeffs r)
488{ assume(r != NULL); return getCoeffType(r)==n_long_C; }
489
490static inline BOOLEAN nCoeff_is_CF(const coeffs r)
491{ assume(r != NULL); return getCoeffType(r)==n_CF; }
492
493/// TRUE, if the computation of the inverse is fast (i.e. prefer leading coeff. 1 over content)
494static inline BOOLEAN nCoeff_has_simple_inverse(const coeffs r)
495{ assume(r != NULL); return r->has_simple_Inverse; }
496/* Z/2^n, Z/p, GF(p,n), R, long_R, long_C*/
497// /* { return (r->ch>1) || (r->ch== -1); } *//* Z/p, GF(p,n), R, long_R, long_C*/
498// #ifdef HAVE_RINGS
499// { return (r->ringtype > 0) || (r->ch>1) || ((r->ch== -1) && (r->float_len < 10)); } /* Z/2^n, Z/p, GF(p,n), R, long_R, long_C*/
500// #else
501// { return (r->ch>1) || ((r->ch== -1) && (r->float_len < 10)); } /* Z/p, GF(p,n), R, long_R, long_C*/
502// #endif
503
504
505
506/// TRUE if n_Delete/n_New are empty operations
507static inline BOOLEAN nCoeff_has_simple_Alloc(const coeffs r)
508{ assume(r != NULL); return r->has_simple_Alloc; }
509/* Z/p, GF(p,n), R, Ring_2toM: nCopy, nNew, nDelete are dummies*/
510// return (rField_is_Zp(r)
511//         || rField_is_GF(r)
512// #ifdef HAVE_RINGS
513//             || rField_is_Ring_2toM(r)
514// #endif
515//             || rField_is_R(r)); }
516
517/* TRUE iff r represents an algebraic or transcendental extension field */
518static inline BOOLEAN nCoeff_is_Extension(const coeffs r)
519{
520  assume(r != NULL);
521  return (getCoeffType(r)==n_algExt) || (getCoeffType(r)==n_transExt);
522}
523
524/* TRUE iff r represents an algebraic extension field */
525static inline BOOLEAN nCoeff_is_algExt(const coeffs r)
526{ assume(r != NULL); return (getCoeffType(r)==n_algExt); }
527
528/* TRUE iff r represents a transcendental extension field */
529static inline BOOLEAN nCoeff_is_transExt(const coeffs r)
530{ assume(r != NULL); return (getCoeffType(r)==n_transExt); }
531
532/// BOOLEAN n_Test(number a, const coeffs r)
533#define n_Test(a,r)  n_DBTest(a, __FILE__, __LINE__, r)
534
535// Missing wrappers for:
536// cfIntMod, cfRePart, cfImPart, cfRead, cfName, cfInit_bigint
537// HAVE_RINGS: cfDivComp, cfExtGcd... cfDivBy
538
539
540// Deprecated:
541static inline int n_GetChar(const coeffs r)
542{ assume(r != NULL); return nInternalChar(r); }
543
544#endif
545
Note: See TracBrowser for help on using the repository browser.