decomp.lib 0.98

A Singular libary for
Functional Decomposition of Polynomials

Christian Gorzel, University of Miunster, 2010

Chapter 1: Library decomp.lib 1

1 Library decomp.lib

Purpose:

Author:

Overview:

Functional Decomposition of Polynomials

Christian Gorzel, University of Muenster
email: gorzelc@math.uni-muenster.de

This library implements functional uni-multivariate decomposition of multivari-
ate polynomials.

A (multivariate) polynomial f is a composite if it can be written as g o h where
g is univariate and h is multivariate, where deg(g), deg(h) > 1.

Uniqueness for monic polynomials is up to linear coordinate change g o h =
g(x/c —d)oc(h(x) +d).

If f is a composite, then decompose(f); returns an ideal (g,h); such that
deg(g) < deg(f) is maximal, (deg(h) > 2). The polynomial h is, by the maxi-
mality of deg(g), not a composite.

The polynomial g is univariate in the (first) variable vvar of f, such that
deg_vvar(f) is maximal.

decompose (f,1) ; computes a full decomposition, i.e. if f is a composite, then
an ideal (g1,...,gm,h) is returned, where g; are univariate and each entry is
primitive such that f =g, 0...0g9,, 0h.

If f is not a composite, for instance if deg(f) is prime, then decompose(f);
returns f.

The command decompose is the inverse: compose (decompose(f,1))==f.

Recall, that Chebyshev polynomials of the first kind commute by composition.

The decomposition algorithms work in the tame case, that is if char(basering)=0
or p:=char(basering) > 0 but deg(g) is not divisible by p. Additionally, it works
for monic polynomials over Z and in some cases for monic polyomials over
coefficient rings.

See is_composite for examples. (It also works over the reals but there it seems
not be numerical stable.)

More information on the univariate resp. multivariate case.

Univariate decomposition is created, with the additional assumption
deg(g), deg(h) > 1.

A multivariate polynomial f is a composite, if f can be written as g o h, where
g is a univariate polynomial and h is multivariate. Note, that unlike in the
univariate case, the polynomial h may be of degree 1.

Eg. f=(x+y)?+2x+y)+1is the composite of g = 2? + 2z + 1 and
h=x+y.

If nvars(basering)>1, then, by default, a single-variable multivariate polyno-
mial is not considered to be the same as in the one-variable polynomial ring; it

Chapter 1: Library decomp.lib 2

Procedures:

will always be decomposed. That is:
>ring r1=0,x,dp;

> decompose (x3+2x+1) ;

x3+2x+1

but:

> ring r2=0, (x,y) ,dp;

> decompose (x3+2x+1) ;
_[1]=x3+2x+1

_[2]=x

In particular:
is_composite(x3+2x+1)==1; in ring rl but
is_composite (x3+2x+1)==0; in ring r2.

This is justified by interpreting the polynomial decomposition as an affine Stein
factorization of the mapping f : k" — k,n > 2.

The behaviour can changed by the some global variables.

int DECMEHTH; choose von zur Gathen’s or Kozen-Landau’s method.
int MINS; compute f = g o h, such that h(0) = 0.

int IMPROVE; simplify the coefficients of g and h if f is not monic.
int DEGONE; single-variable multivariate are considered uni-variate.

See decompopts; for more information. Additional information is displayed if
printlevel > 0.

decompopts displays resp. resets global options
decompose [complete] functional decomposition of poly f
is_composite predicate, is f a composite polynomial?
chebyshev the nth Chebyshev polynomial of the first kind
compose compose entries of ideal

Auxiliary procedures:

References:

makedistinguished transforms f to a var-distinguished polynomial

divisors intvec [increasing] of the divisors d of n
randomintvec random intvec size n, [non-zero| entries in {a,b}
findtransformation transforms f to a var-distinguished polynomial
maxdegs maximal degree for each variable of the poly f

D. Kozen, S. Landau: Polynomial Decomposition Algorithms,
J. Symb. Comp. (1989), 7, 445-456.

J. von zu Gathen: Functional Decomposition of Polynomials: the Tame Case,
J. Symb. Comp. (1990), 9, 281-299.

J. von zur Gathen, J. Gerhard: Modern computer algebra,

Cambridge University Press, Cambridge, 2003.

Chapter 1: Library decomp.lib

1.1 decompopts

Usage: decompopts(); or decompopts("reset");
Return: nothing

Note: in the first case, it shows the setting of the control parameters;
in the second case, it kills the user-defined control parameters and
resets to the default setting which will then be diplayed.

int DECMETH; Method for computing the univariate decomposition
0 : (default) Kozen-Landau
1 : von zur Gathen

int IMPROVE Choice of coefficients for the decomposition
(g1,---,91,h) of a non-monic polynomials f.

0 : leadcoef(g,) = leadcoef(f) and gs,. .., g;, h are monic

1 : (default), content(g;) = 1

int MINS

f=goh,(g1,...,9m,h) of a non-monic polynomials f.
0: g(0) = £(0), (0) 0 [ueberlegen fuer complete]

1 : (default), g(0)=0, h(0) = £(0)

2 : Tschirnhaus

int DECORD; The order in which the decomposition will be computed
0 : minfirst
1 : (default) maxfirst

int DEGONE; decompose also polynomials built on linear ones
0 : (default)

1:
Example:
LIB "decomp.lib";
decompopts () ;
[d
— === Global variables for decomp.lib ===
(g
— —- DECORD (int) not defined, implicitly 1
— -- MINS (int) not defined, implicitly O
— —-- IMPROVE (int) not defined, implicitly 1

1.2 decompose

Usage: decompose(f); f poly
decompose(f,1); f poly

Return: poly, the input, if f is not a composite
ideal, if the input is a composite

Chapter 1: Library decomp.lib

Note: computes a full decomposition if called by the second variant
See: compose
Example:

LIB "decomp.lib";

ring r2 = 0,(x,y),dp;

decompose (((x3+2y) "6+x3+2y) "4) ;
— _[1]=x24+4x19+6x14+4x9+x4

— _[2]=x3+2y

// complete decomposition
decompose (((x3+2y) "6+x3+2y) "4,1) ;

— _[1]=x2

— _[2]=x2

— _[3]=x6+x

— _[4]=x3+2y

[/ mmm e

// decompose over the integers
ring rZ = integer,x,dp;

// ** - lift
// **x - reduce
decompose (compose (ideal (x3,x2+2x,x3+2)),1) ;

— // ** You are using coefficient rings which are not fields.

— // ** Please note that only limited functionality is available
— // ** for these coefficients.

— // *x

— // ** The following commands are meant to work:

— // ** - basic polynomial arithmetic

— // ** - std

— // ** - syz

[d

(g

— _[1]=x3

— _[2]=x2-1

— _[3]=x3+3

[/ mmmm e

// prime characteristic

ring r7 = 7,x,dp;

decompose (compose (ideal (x2+x,x7))) ; // tame case

— _[1]=x2+x

— _[2]=x7

[/ mmmm
decompose (compose (ideal (x7+x,x2))) ; // wild case

— x14+x2
Y O
ring ry = (0,y),x,dp; // y is now a parameter

compose (x2+yx+5,x5-2yx3+x) ;

= x10+(-4y) *x8+ (4y2+2) *x6+ (y) *x5+ (—4y) *x4+(-2y2) *x3+x2+(y) *x+5
decompose(_) ;

— _[1]1=1/4%x2+(-1/4y2+5)

— _[2]=2%x5+(-4y) *x3+2*x+(y)

// Usage of variable IMPROVE

ideal J = x2+10x, 64x7-112x5+56x3-7x, 4x3-3x;

decompose (compose (J) ,1);

— _[1]=x2+10%x

— _[2]=64%x7-112%x5+56*x3-7*x

— _[3]=4%x3-3%x

int IMPROVE=0;

exportto(Decomp, IMPROVE) ;

decompose (compose (J),1) ;

— _[1]1=1099511627776%x2+10485760%*x

Chapter 1: Library decomp.lib)

1.3

— _[2]=x7-7/64*x5+7/2048%x3-7/262144%x
— _[3]=x3-3/4x*x

is_composite

Usage: is_composite(f); f poly

Return: int

1, if f is decomposable

0, if f is not decomposable

-1, if char(basering)>0 and deg(f) is divisible by char(basering) but no decom-
position has been found.

Note: The last case means that it could exist a decomposition f=g o h with
char(basering) | deg(g), but this wild case cannot be decided by the algorithm.
Some additional information will be displayed when called by the user.
Example:

1.4

LIB "decomp.lib";

ring r0 = 0,x,dp;

is_composite (x4+5x2+6) ; // biquadratic polynomial

— 1

is_composite (2x2+x+1) ; // prime degree

— The degree is prime.

— 0
Y R
// polynomial ring with several variables

ring R = 0, (x,y) ,dp;

// single-variable multivariate polynomials

is_composite (2x+1) ;

+— The polynomial is linear

— 0

is_composite (2x2+x+1) ;

— 1

Y R
// prime characteristic

ring r7 = 7,x,dp;

is_composite(compose (ideal (x2+x,x14))); // is_composite(x14+x7);

— 1

is_composite (compose (ideal (x14+x,x2))); // is_composite(x14+x2);

— // -- Warning: wild case, cannot decide whether the polynomial has a

— // -- decomposition goh with deg(g) divisible by char(basering) = 7.
— -1

chebyshev

Usage: chebyshev(n); n int, n >= 0

chebyshev(n,c); n int, n >= 0, ¢ number, c¢!=0

Return: poly, the [monic] nth Chebyshev polynomial of the first kind.

Note:

The polynomials are defined in the first variable, say x, of the basering.

The (generalized) Chebyshev polynomials of the first kind can be defined by
the recursion: Cy =¢, C; =z, C,, =2/c-x-C,_1 —C,_2, n>2,¢ #0.

Chapter 1: Library decomp.lib 6

These polynomials commute by composition: C,, o C,, = C, o C,,.

For ¢=1, we obtain the standard (non monic) Chebyshev polynomials 7}, which
satisfy T,,(xz) = cos(n - arccos(x)).

For c=2 (default), we obtain the monic Chebyshev polynomials P, which satisfy
the relation P,(x + 1/x) = 2™ + 1/2".

By default the monic Chebyshev polynomials are returned: P,, =chebyshev(n)
and T, =chebyshev(n,1).

It holds P, (z) =2-T,(x/2) and more generally C,(c-x) = c-T,(z)

That is subst (chebyshev(n,c),var(1),c*var(l))= cxchebyshev(n,1).

If char(basering) = 2, then Cy =1,C; = z,C5 = 1,5 = x, and so on.

Example:

LIB "decomp.lib";

ring r = 0,x,1p;

// The monic Chebyshev polynomials
chebyshev (0) ;

— 2

chebyshev (1) ;

— X

chebyshev(2) ;

— x2-2

chebyshev(3);

— x3-3x

// These polynomials commute

compose (chebyshev(2) ,chebyshev(6)) ==

compose (chebyshev (6) ,chebyshev(2)) ;

— 1

// The standard Chebyshev polynomials
chebyshev(0,1);

— 1

chebyshev(1,1);

— X

chebyshev(2,1);

— 2x2-1

chebyshev(3,1);

— 4x3-3x

Y R
// The relation for the various Chebyshev polynomials
5*xchebyshev(3,1)==subst (chebyshev(3,5) ,x,5x);
— 1

Y
// char 2 case

ring r2 = 2,x,dp;

chebyshev(2) ;

— 1

chebyshev(3);

— X

1.5 compose

Usage: compose(I); I ideal,
compose(fl,...,fn); f1,....fn poly

Chapter

Assume:

Return:
Note:
See:

Example

1: Library decomp.lib 7

the ideal consists of n=ncols(I) >= 1 entries,
where I[1],...,I[n-1] are univariate in the same variable
but I[n] may be multivariate.

poly, the composition I[1](I[2](...I[n]))
this procedure is the inverse of decompose

decompose

LIB "decomp.lib";
ring r = 0,(x,y),dp;
compose (x3+1,x2,y3+x) ;

—

//

y18+6xy15+15x2y12+20x3y9+15x4y6+6x5y3+x6+1
or the input as one ideal

compose (ideal (x3+1,x2,x3+y)) ;

—

x18+6x15y+15x12y2+20x9y3+15x6y4+6x3yb+y6+1

1.6 makedistinguished

Usage: makedistinguished(f,vvar); f, vvar poly; where vvar is a ring variable

Return: (poly, ideal): the transformed polynomial and an ideal defining the map which
reverses the transformation.

Purpose: let vvar = var(1). Then f is transformed by a random linear coordinate change
phi = (var(1), var(2)+c_2*vvar,...,var(n)+c_n*vvar)
such that phi(f) = f o phi becomes distinguished with respect to vvar. That is,
the new polynomial contains the monomial vvar~d, where d is the degree of f.
If already f is distinguished w.r.t. vvar, then f is left unchanged and the re-
transformation is the identity.

Note 1: (this proc correctly works independent of the term ordering.) to apply the
reverse transformation, either define a map or use substitute (to be loaded
from poly.lib).

Note 2: If p=char(basering) > 0, then there exist polynomials of degree d>=p, e.g. (p—
1)zPy + xy?, that cannot be transformed to a vvar-distinguished polynomial.
In this case, *p random trials will be made and the proc may leave with an
ERROR message.

Example:

LIB "decomp.lib";
int randval = system("--random"); // store initial value

system("--random",0815) ;
ring r = 0,(x,y),dp;

poly g;

map phi;

Y R R
// Example 1:

poly f = 3xy4 + 2xy2 + x5y3 + x + y6; // degree 8

// make the polynomial y-distinguished

g, phi = makedistinguished(f,y);

g;

— xby3+5x4y4+10x3y5+10x2y6+5xy7+y8+y6+3xy4+3y5+2xy2+2y3+x+y

Chapter 1: Library decomp.lib

phi;

— phi[1]=x-y

— phi[2]=y

// to reverse the transformation apply the map
f == phi(g);

— 1

/]

// Example 2:

// The following polynomial is already x-distinguished

f = x6+yd+xy;

g,phi = makedistinguished(f,x);

g; // £ is left unchanged

— x6+y4d+xy

phi; // the transformation is the identity.
— phi[1]=x

— phi[2]=y

system("--random" ,randval) ; // reset random generator

// Example 3: // polynomials which cannot be transformed

// 1f p=char(basering)>0, then (p-1)*x"p*y + x*y p factorizes completely
// in linear factors, since (p-1)*x"p+x equiv O on F_p. Hence,

// such polynomials cannot be transformed to a distinguished polynomial.
ring r3 = 3,(x,y),dp;

makedistinguished(2x3y+xy3,y) ;

— ? it could not be transform to a y-distinguished polynomial.

— ? leaving decomp.lib: :makedistinguished

Chapter 2: Index

2 Index

C F

chebyshev i 5 Functional decomposition.......................
COMIPOSE .« ottt ettt it 6

D I

IS_COMPOSIte . ..ottt
decomp.ib....... ... 1
decomp_lib..........oo 1
decompopts ...t 3 M
decompoSe. ... 3

makedistinguished

