next up previous
Next: Appendix B: Timings on Up: Monomial Representations for Gröbner Computations Previous: Bibliography

Appendix A: Benchmark examples

I this appendix, we show some more details about the sets of polynomial we used for our GB computation test runs.


 
Table 3: Summary of properties of benchmark examples
Example #vars #polys homog Degs Deg$_{\max}$ Ref
ecyclic 7 43 7 no 7 27  
ecyclic 6 31 6 no 6 17  
rcyclic $10 \!\leq\! i\!\leq\! 19$ i $i\!-\!1$ no $i\!-\!1$ $\lfloor i/2 \rfloor\!*\!2\!+\!4$  
homog 2mat3 19 8 yes 4 13 [14]
2mat3 18 8 no 4 13  
homog gonnet 18 19 yes 2 11 [6]
gonnet 17 19 no 2 11 [6]
schwarz 11 11 11 no 2 13  
schwarz 10 10 10 no 2 12  
katsura 8 9 9 no 2 10 [13]
katsura 7 8 8 no 2 9 [13]
bjork 8 8 9 no 8 18 [5]
homog cyclic 7 8 7 yes 7 20 [5]
cyclic 7 7 7 no 7 27 [5]
homog cyclic 6 7 6 yes 6 17 [5]
cyclic 6 6 6 no 6 17 [5]
homog alex 3 6 4 yes 14 51  
alex 3 5 4 no 14 51  
gerhard 1 5 3 yes 10 32  
symmetric 6 5 5 yes 6 23 [12]
homog alex 2 5 3 yes 12 40  
cohn2 4 4 no 6 20 [14]
alex 2 4 3 no 12 33  
gerhard 2 4 3 yes 9 44  
gerhard 3 4 3 yes 23 81  
 

Table 3 lists a summary of their properties: column #vars shows the number of occurring variables, column #polys the number of elements (polynomials), column homog gives the homogeneity, and Degs shows the maximal degree of the input sets. Deg$_{\max}$ gives the maximal degree occurring during the GB computation w.r.t. the degree reverse lexicographical ordering. The last column gives references to, our sources of these examples[*]. Those without a reference are from the collection of examples of the SINGULAR team.

Finally, in the rest of this appendix, we completely list the all the used examples.

cyclic n:
$[x_1, \ldots x_n]$, n generators pk:

\begin{displaymath}1 \leq k < n: p_k = \sum_{j=1}^n \prod_{i=j}^{j+k-1} x_i, \quad
p_n = \prod_{i=1}^{n} x_i -1
\end{displaymath}

For example, cyclic 4:

\begin{displaymath}\left(
\begin{array}{c}
x_{1} + x_{2} + x_{3} + x_{4} \\
x_{...
..._{4}x_{1}x_{2}
\\
x_{1}x_{2}x_{3}x_{4} - 1
\end{array}\right)\end{displaymath}

homog cyclic n:
$[x_1, \ldots x_{n+1}]$, n generators pk:

\begin{displaymath}1 \leq k < n: p_k = \sum_{j=1}^n \prod_{i=j}^{j+k-1} x_i, \quad
p_n = \prod_{i=1}^{n} x_i - x_{n+1}^n
\end{displaymath}

For example, homog cyclic 4:

\begin{displaymath}\left(
\begin{array}{c}
x_{1} + x_{2} + x_{3} + x_{4} \\
x_{...
...x_{1}x_{2}
\\
x_{1}x_{2}x_{3}x_{4} - x_5^4
\end{array}\right)\end{displaymath}

rcyclic n:
$[x_1, \ldots x_n]$, n generators pk:

\begin{displaymath}1 \leq k < n: p_k = \sum_{j=1}^3 \prod_{i=j}^{j+k-1} x_i, \quad
p_n = \prod_{i=1}^{n} x_i -1
\end{displaymath}

For example, rcyclic 4:

\begin{displaymath}\left(
\begin{array}{c}
x_{1} + x_{2} + x_{3} \\
x_{1}x_{2} ...
..._{3}x_{4}x_{1}
\\
x_{1}x_{2}x_{3}x_{4} - 1
\end{array}\right)\end{displaymath}

ecyclic n:
$[x_1, \ldots x_{n(n-1) + 1}]$, n generators pk:

\begin{displaymath}1 \!\leq\! k \!<\! n: p_k \!=\! \sum_{j=1}^n \prod_{i=j}^{j+k...
...x_{(j-1)n+i}, \quad
p_n \!= \! \prod_{i=1}^{n} x_{(i-1)n + 1}
\end{displaymath}

For example, ecyclic 4:

\begin{displaymath}\left(
\begin{array}{c}
x_{1} + x_{2} + x_{3} + x_{4} \\
x_{...
..._{4}x_{8}x_{12}\\
x_{1}x_{5}x_{9}x_{13} - 1
\end{array}\right)\end{displaymath}


\begin{table*}% latex2html id marker 584\par\parindent=0pt
\par\begin{descript...
...
wh+bf, \\
a+dg
\end{array}\right)\end{equation*}\end{description}\end{table*}


\begin{table*}% latex2html id marker 617\parindent=0pt
\begin{description}
\it...
...(d+g)*(d+h)-1
\end{array}\right)\end{equation*}\par\end{description}\end{table*}


\begin{table*}% latex2html id marker 1179\parindent=0pt
\begin{description}
\p...
...{5}z^{2}+18z^{17}
\end{array}\right)\end{equation*}\end{description}\end{table*}



[ht]


next up previous
Next: Appendix B: Timings on Up: Monomial Representations for Gröbner Computations Previous: Bibliography
| ZCA Home | Reports |