|
C.6.5 Relevant References
- [Big97] Bigatti, A.M.:
Computation of Hilbert-Poincare series.
Journal of Pure and Applied Algebra (1997) 199, 237-253
- [BLR98] Bigatti, A.M.; La Scala, R.; Robbiano, L.:
Computing toric ideals.
Journal of Symbolic Computation (1999) 27, 351-366
- [Coh93] Cohen, H.:
A Course in Computational Algebraic Number Theory.
Springer (1997)
- [CoTr91] Conti, P.; Traverso, C.:
Buchberger algorithm and integer programming.
Proceedings AAECC-9 (new Orleans), Springer LNCS (1991) 539,
130-139
- [DBUr95] Di Biase, F.; Urbanke, R.:
An algorithm to calculate the kernel of certain polynomial ring
homomorphisms.
Experimental Mathematics (1995) 4, 227-234
- [HoSh98] Hosten, S.; Shapiro, J.:
Primary decomposition of lattice basis ideals.
Journal of Symbolic Computation (2000), 29, 625-639
- [HoSt95] Hosten, S.; Sturmfels, B.:
GRIN: An implementation of Groebner bases for integer programming.
in Balas, E.; Clausen, J. (editors): Integer Programming and
Combinatorial Optimization.
Springer LNCS (1995) 920, 267-276
- [Pot94] Pottier, L.:
Groebner bases of toric ideals.
Rapport de recherche 2224 (1997), INRIA Sophia Antipolis
- [Stu96] Sturmfels, B.:
Groebner Bases and Convex Polytopes.
University Lecture Series, Volume 8 (1996), American Mathematical
Society
- [The99] Theis, C.:
Der Buchberger-Algorithmus fuer torische Ideale und seine Anwendung
in der ganzzahligen Optimierung.
Diplomarbeit, Universitaet des Saarlandes (1999), Saarbruecken
(Germany)
|