Home Online Manual
Top
Back: Decoding method based on quadratic equations
Forward: References
FastBack: Non-commutative algebra
FastForward: References
Up: Decoding codes with Groebner bases
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

C.8.6 References for decoding with Groebner bases

  • [ABF2002] Augot D.; Bardet M.; Faugére J.-C.: Efficient Decoding of (binary) Cyclic Codes beyond the correction capacity of the code using Gröbner bases. INRIA Report (2002) 4652

  • [ABF2008] Augot D.; Bardet M.; Faugére, J.-C.: On the decoding of cyclic codes with Newton identities. to appear in Special Issue "Gröbner Bases Techniques in Cryptography and Coding Theory" of Journ. Symbolic Comp. (2008)

  • [BP2008a] Bulygin S.; Pellikaan R.: Bounded distance decoding of linear error-correcting codes with Gröbner bases. to appear in Special Issue "Gröbner Bases Techniques in Cryptography and Coding Theory" of Journ. Symbolic Comp. (2008)

  • [BP2008b] Bulygin S.; Pellikaan R.: Decoding and finding the minimum distance with Gröbner bases: history and new insights. to appear in "Selected topics of information and coding theory", World Scientific (2008)

  • [FL1998] Fitzgerald J.; Lax R.F.: Decoding affine variety codes using Gröbner bases. Designs, Codes and Cryptography (1998) 13, 147-158

  • [OS2005] Orsini E.; Sala M.: Correcting errors and erasures via the syndrome variety. J. Pure and Appl. Algebra (2005) 200, 191-226

  • [S2007] Sala M.: Gröbner basis techniques to compute weight distributions of shortened cyclic codes. J. Algebra Appl. (2007) 6, 3, 403-414