|
C.8.6 References for decoding with Groebner bases
- [ABF2002]
Augot D.; Bardet M.; Faugére J.-C.:
Efficient Decoding of (binary) Cyclic Codes beyond the correction capacity of the code using Gröbner bases.
INRIA Report (2002) 4652
- [ABF2008]
Augot D.; Bardet M.; Faugére, J.-C.:
On the decoding of cyclic codes with Newton identities.
to appear in Special Issue "Gröbner Bases Techniques in Cryptography and Coding Theory" of Journ. Symbolic Comp. (2008)
- [BP2008a]
Bulygin S.; Pellikaan R.:
Bounded distance decoding of linear error-correcting codes with Gröbner bases.
to appear in Special Issue "Gröbner Bases Techniques in Cryptography and Coding Theory" of Journ. Symbolic Comp. (2008)
- [BP2008b]
Bulygin S.; Pellikaan R.:
Decoding and finding the minimum distance with Gröbner bases: history and new insights.
to appear in "Selected topics of information and coding theory", World Scientific (2008)
- [FL1998]
Fitzgerald J.; Lax R.F.:
Decoding affine variety codes using Gröbner bases.
Designs, Codes and Cryptography (1998) 13, 147-158
- [OS2005]
Orsini E.; Sala M.:
Correcting errors and erasures via the syndrome variety.
J. Pure and Appl. Algebra (2005) 200, 191-226
- [S2007]
Sala M.:
Gröbner basis techniques to compute weight distributions of shortened cyclic codes.
J. Algebra Appl. (2007) 6, 3, 403-414
|