|
D.2.4.11 locusdg
Procedure from library grobcov.lib (see grobcov_lib).
- Usage:
- locusdg(list L)
Calling sequence:
locusdg(locus(S)).
- Return:
- The output is the list of the "Relevant" components of the
locus in Dynamic Geometry [C1,..,C:m], where
C_i= [p_i,[p_i1,..p_is_i], "Relevant", level_i]
The "Relevant" components are "Normal" and
"Accumulation" components of the locus. (See help
for locus).
Example:
| LIB "grobcov.lib";
if(defined(R)){kill R;};
ring R=(0,a,b),(x,y),dp;
short=0;
// Concoid
ideal S96=x^2+y^2-4,(b-2)*x-a*y+2*a,(a-x)^2+(b-y)^2-1;
def L96=locus(S96);
L96;
==> [1]:
==> [1]:
==> _[1]=(a^4+2*a^2*b^2-9*a^2+b^4-9*b^2+4*b+12)
==> [2]:
==> [1]:
==> _[1]=1
==> [3]:
==> [1]:
==> 1
==> [2]:
==> Normal
==> [3]:
==> _[1]=x^2+y^2-4
==> [2]:
==> [1]:
==> _[1]=(a^2+b^2-4*b+3)
==> [2]:
==> [1]:
==> _[1]=1
==> [3]:
==> [1]:
==> 0
==> [2]:
==> Special
==> [3]:
==> _[1]=y^2-3*y+2
==> _[2]=x*y-x
==> _[3]=x^2+3*y-6
locusdg(L96);
==> [1]:
==> [1]:
==> _[1]=(a^4+2*a^2*b^2-9*a^2+b^4-9*b^2+4*b+12)
==> [2]:
==> [1]:
==> _[1]=1
==> [3]:
==> [1]:
==> 1
==> [2]:
==> Relevant
==> [3]:
==> _[1]=x^2+y^2-4
|
|