| LIB "modstd.lib";
ring R1 = 0, (x,y,z,t), dp;
ideal I = 3x3+x2+1, 11y5+y3+2, 5z4+z2+4;
modSyz(I);
==> _[1]=z4*gen(1)-3/5x3*gen(3)-1/5x2*gen(3)+1/5z2*gen(1)-1/5*gen(3)+4/5*gen(\
1)
==> _[2]=y5*gen(1)-3/11x3*gen(2)+1/11y3*gen(1)-1/11x2*gen(2)-1/11*gen(2)+2/11\
*gen(1)
==> _[3]=y5*gen(3)-5/11z4*gen(2)+1/11y3*gen(3)-1/11z2*gen(2)+2/11*gen(3)-4/11\
*gen(2)
simplify(syz(I),1);
==> _[1]=z4*gen(1)-3/5x3*gen(3)-1/5x2*gen(3)+1/5z2*gen(1)-1/5*gen(3)+4/5*gen(\
1)
==> _[2]=y5*gen(1)-3/11x3*gen(2)+1/11y3*gen(1)-1/11x2*gen(2)-1/11*gen(2)+2/11\
*gen(1)
==> _[3]=y5*gen(3)-5/11z4*gen(2)+1/11y3*gen(3)-1/11z2*gen(2)+2/11*gen(3)-4/11\
*gen(2)
|