Home Online Manual
Top
Back: HilbertClassPoly
Forward: codim
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.6.20 sing_lib

Library:
sing.lib
Purpose:
Invariants of Singularities
Authors:
Gert-Martin Greuel, email: greuel@mathematik.uni-kl.de
Bernd Martin, email: martin@math.tu-cottbus.de

Procedures:

D.6.20.1 codim  vector space dimension of id2/id1 if finite
D.6.20.2 deform  infinitesimal deformations of ideal i
D.6.20.3 dim_slocus  dimension of singular locus of ideal i
D.6.20.4 is_active  is polynomial f an active element mod id? (id ideal/module)
D.6.20.5 is_ci  is ideal i a complete intersection?
D.6.20.6 is_is  is ideal i an isolated singularity?
D.6.20.7 is_reg  is polynomial f a regular element mod id? (id ideal/module)
D.6.20.8 is_regs  are gen's of ideal i regular sequence modulo id?
D.6.20.9 locstd  SB for local degree ordering without cancelling units
D.6.20.10 milnor  milnor number of ideal i; (assume i is ICIS in nf)
D.6.20.11 nf_icis  generic combinations of generators; get ICIS in nf
D.6.20.12 slocus  ideal of singular locus of ideal i
D.6.20.13 qhspectrum  spectrum numbers of w-homogeneous polynomial f
D.6.20.14 Tjurina  SB of Tjurina module of ideal i (assume i is ICIS)
D.6.20.15 tjurina  Tjurina number of ideal i (assume i is ICIS)
D.6.20.16 T_1  T^1-module of ideal i
D.6.20.17 T_2  T^2-module of ideal i
D.6.20.18 T_12  T^1- and T^2-module of ideal i
D.6.20.19 tangentcone  compute tangent cone of id