Home Online Manual
Top
Back: secondary_not_cohen_macaulay
Forward: rel_orbit_variety
FastBack:
FastForward:
Up: finvar_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.7.1.33 orbit_variety

Procedure from library finvar.lib (see finvar_lib).

Usage:
orbit_variety(F,s);
F: a 1xm <matrix> defing an invariant ring, s: a <string> giving the name for a new ring

Return:
a Groebner basis (type <ideal>, named G) for the ideal defining the orbit variety (i.e. the syzygy ideal) in the new ring (named newring)

Theory:
The ideal of algebraic relations of the invariant ring generators is calculated, then the variables of the original ring are eliminated and the polynomials that are left over define the orbit variety

Example:
 
LIB "finvar.lib";
ring R=0,(x,y,z),dp;
matrix F[1][7]=x2+y2,z2,x4+y4,1,x2z-1y2z,xyz,x3y-1xy3;
orbit_variety(F,"");
print(G);
==> y(4)-1,
==> y(5)*y(6)-y(2)*y(7),
==> y(2)*y(3)-y(5)^2-2*y(6)^2,
==> y(1)^2*y(6)-2*y(3)*y(6)+y(5)*y(7),
==> y(1)^2*y(5)-y(3)*y(5)-2*y(6)*y(7),
==> y(1)^2*y(2)-y(2)*y(3)-2*y(6)^2,
==> y(1)^4-3*y(1)^2*y(3)+2*y(3)^2+2*y(7)^2
basering;
==> // coefficients: QQ
==> // number of vars : 7
==> //        block   1 : ordering dp
==> //                  : names    y(1) y(2) y(3) y(4) y(5) y(6) y(7)
==> //        block   2 : ordering C