Home Online Manual
Top
Back: three_elements
Forward: ishyper
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.12.3 hyperel_lib

Library:
hyperel.lib
Author:
Markus Hochstetter, markushochstetter@gmx.de

Note:
The library provides procedures for computing with divisors in the jacobian of hyperelliptic curves. In addition procedures are available for computing the rational representation of divisors and vice versa. The library is intended to be used for teaching and demonstrating purposes but not for efficient computations.

Procedures:

D.12.3.1 ishyper  test, if y^2+h(x)y=f(x) is hyperelliptic
D.12.3.2 isoncurve  test, if point P is on C: y^2+h(x)y=f(x)
D.12.3.3 chinrestp  compute polynom x, s.t. x=b[i] mod moduli[i]
D.12.3.4 norm  norm of a(x)-b(x)y in IF[C]
D.12.3.5 multi  (a(x)-b(x)y)*(c(x)-d(x)y) in IF[C] ratrep (P,h,f) returns polynomials a,b, s.t. div(a,b)=P
D.12.3.6 divisor  computes divisor of a(x)-b(x)y
D.12.3.7 gcddivisor  gcd of the divisors p and q
D.12.3.8 semidiv  semireduced divisor of the pair of polys D[1], D[2]
D.12.3.9 cantoradd  adding divisors of the hyperell. curve y^2+h(x)y=f(x)
D.12.3.10 cantorred  returns reduced divisor which is equivalent to D
D.12.3.11 double  computes 2*D on y^2+h(x)y=f(x)
D.12.3.12 cantormult  computes m*D on y^2+h(x)y=f(x)