Home Online Manual
Top
Back: arrOrlikSolomon
Forward: arrIsFree
FastBack:
FastForward:
Up: arr_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.14.1.30 arrDer

Procedure from library arr.lib (see arr_lib).

Usage:
arrDer(A); arr A , multarr A

Return:
[module] The module Der(A) of derivations of the (multi-)arrangement A, i.e. the derivations tangent to each hyperplane of A (resp. with multiplicities)

Note:
This is only defined for central (multi-)arrangements

Example:
 
LIB "arr.lib";
ring R = 0,(x,y,z),dp;
arr A3 = arrBoolean(3);
arr B3 = arrTypeB(3);
arr G = ideal(x,y,z,x+y+z);
//The derivation module of the Boolean 3-arrangement:
arrDer(A3);
==> _[1]=z*gen(3)
==> _[2]=y*gen(2)
==> _[3]=x*gen(1)
//The derivation module of the Braid 3-arrangement:
arrDer(B3);
==> _[1]=x*gen(1)+y*gen(2)+z*gen(3)
==> _[2]=x2y*gen(2)-y3*gen(2)+x2z*gen(3)-z3*gen(3)
==> _[3]=x2y2z*gen(3)-x2z3*gen(3)-y2z3*gen(3)+z5*gen(3)
//The derivation module of the generic arrangement:
arrDer(G);
==> _[1]=x*gen(1)+y*gen(2)+z*gen(3)
==> _[2]=yz*gen(3)-yz*gen(2)
==> _[3]=xz*gen(3)+yz*gen(2)+z2*gen(3)
==> _[4]=xy*gen(2)+y2*gen(2)+yz*gen(2)
See also: arrDer; arrExponents; arrIsFree.