| LIB "arr.lib";
ring R = 0,(x,y,z,t),dp;
arr A = arrBraid(4);
arrposet P = arrLattice(A);
==>
==>
==> === Computing poset ===
==>
==>
==> rank 2: found 7 flats in 0s
==> rank 3: found 1 flats in 0s
==>
==>
==> Matrix tests: 38
P;
==> Given Arrangement:
==> _[1]=x-y
==> _[2]=x-z
==> _[3]=x-t
==> _[4]=y-z
==> _[5]=y-t
==> _[6]=z-t
==>
==> Corresponding poset:
==> ====== rank 1: 6 flats ======
==> (1), (2), (3), (4), (5), (6),
==> ====== rank 2: 7 flats ======
==> (1,2,4), (1,3,5), (1,6), (2,3,6), (2,5), (3,4), (4,5,6),
==> ====== rank 3: 1 flats ======
==> (1,2,3,4,5,6),
==> ====== rank 4: 0 flats ======
==>
==>
//As you can see the values are not calculated yet:
printMoebius(P);
==> Moebius values:
==> ====== rank 1: 6 flats ======
==> (-1), (-1), (-1), (-1), (-1), (-1),
==> ====== rank 2: 7 flats ======
==> (0), (0), (0), (0), (0), (0), (0),
==> ====== rank 3: 1 flats ======
==> (0),
==> ====== rank 4: 0 flats ======
==>
P = moebius(P);
//Now all entries are initialized:
printMoebius(P);
==> Moebius values:
==> ====== rank 1: 6 flats ======
==> (-1), (-1), (-1), (-1), (-1), (-1),
==> ====== rank 2: 7 flats ======
==> (2), (2), (1), (2), (1), (1), (2),
==> ====== rank 3: 1 flats ======
==> (-6),
==> ====== rank 4: 0 flats ======
==>
|