Home Online Manual
Top
Back: derivationFromPoly
Forward: derivationToString
FastBack:
FastForward:
Up: difform_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.2.33 derivationConstructor

Procedure from library difform.lib (see difform_lib).

Usage:
derivation phi = inp; inp of any type

Return:
the derivation defined by inp:

Remarks:
the output depens on the type of inp:
- if inp is of type list, the constructor derivationFromList is used - if inp is of type poly, number, int or bigint, derivationFromPoly is used

Note:
for other than the mentioned types, there is no output

Example:
 
LIB "difform.lib";
ring R = 31,(x,y,z),dp;
diffAlgebra();
==> // The differential algebra Omega_R was constructed and the differential \
   forms dDx, dDy, dDz, dx, dy, dz are available.
////////////////////////////////////////////////////////////
// Construction of derivations from lists and polynomials //
////////////////////////////////////////////////////////////
list L; L[1] = list(dx,dz,dy); L[2] = list(x2,y-x,z);
derivation phi = L; phi;
==>  Omega_R^1 --> R
==>        dx |--> x2
==>        dy |--> z
==>        dz |--> -x+y
==> 
==> 
derivation psi = 3x2-12z; psi;
==>  Omega_R^1 --> R
==>        dx |--> 3x2-12z
==>        dy |--> 3x2-12z
==>        dz |--> 3x2-12z
==> 
==> 
kill Omega_R,dx,dy,dz,phi,psi;
See also: derivationFromList; derivationFromPoly.