| LIB "multigrading.lib";
// ----------- extreme case ------------ //
intmat S[1][3] =
1, -1, 10;
// Torsion:
intmat L[1][1] =
0;
// The free subgroup generated by elements of S within Z^1
// can be constructed as follows:
// shortcut:
def G = createTorsionFreeGroup(S);
printGroup(G);
==> Generators:
==> 1 -1 10
==> Relations:
==> 0
// the general way:
def GG = createGroup(S, L); // (S+L)/L
printGroup(GG);
==> Generators:
==> 1 -1 10
==> Relations:
==> 0
|