Home Online Manual
Top
Back: monomial
Forward: mres
FastBack: Functions and system variables
FastForward: Control structures
Up: Functions
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

5.1.97 mpresmat

Syntax:
mpresmat ( ideal_expression, int_expression )
Type:
module
Purpose:
computes the multipolynomial resultant matrix of the input system. Uses the sparse resultant matrix method of Gelfand, Kapranov and Zelevinsky (second parameter = 0) or the resultant matrix method of Macaulay (second parameter = 1).
Note:
When using the resultant matrix method of Macaulay the input system must be homogeneous. The number of elements in the input system must be the number of variables in the basering plus one.
Example:
 
  ring rsq=(0,s,t,u),(x,y),lp;
  ideal i=s+tx+uy,x2+y2-10,x2+xy+2y2-16;
  module m=mpresmat(i,0);
  print(m);
==> -16,0,  -10,0,  (s),0,  0,  0,  0,  0,  
==> 0,  -16,0,  -10,(u),(s),0,  0,  0,  0,  
==> 2,  0,  1,  0,  0,  (u),0,  0,  0,  0,  
==> 0,  2,  0,  1,  0,  0,  0,  0,  0,  0,  
==> 0,  0,  0,  0,  (t),0,  -10,(s),0,  -16,
==> 1,  0,  0,  0,  0,  (t),0,  (u),(s),0,  
==> 0,  1,  0,  0,  0,  0,  1,  0,  (u),2,  
==> 1,  0,  1,  0,  0,  0,  0,  (t),0,  0,  
==> 0,  1,  0,  1,  0,  0,  0,  0,  (t),1,  
==> 0,  0,  0,  0,  0,  0,  1,  0,  0,  1   
See uressolve.