|
7.4.4 References (plural)
The Centre for Computer Algebra Kaiserslautern publishes a series of preprints
which are electronically available at
https://www.mathematik.uni-kl.de/organisation/zca/reports-on-ca/.
Other sources to check are the following books and articles:
Text books
-
[DK] Y. Drozd and V. Kirichenko.
Finite dimensional algebras. With an appendix by Vlastimil Dlab.
Springer, 1994
-
[GPS] Greuel, G.-M. and Pfister, G. with contributions by Bachmann, O. ; Lossen, C.
and Schönemann, H.
A SINGULAR Introduction to Commutative Algebra.
Springer, 2002
-
[BGV] Bueso, J.; Gomez Torrecillas, J.; Verschoren, A.
Algorithmic methods in non-commutative algebra. Applications to quantum groups.
Kluwer Academic Publishers, 2003
-
[Kr] Kredel, H.
Solvable polynomial rings.
Shaker, 1993
http://krum.rz.uni-mannheim.de/kredel/kredel_solvable_polynomial_rings.pdf
-
[Li] Huishi Li.
Non-commutative Gröbner bases and filtered-graded transfer.
Springer, 2002
-
[MR] McConnell, J.C. and Robson, J.C.
Non-commutative Noetherian rings. With the cooperation of L. W. Small.
Graduate Studies in Mathematics. 30. Providence, RI: American Mathematical Society (AMS).,
2001
Descriptions of algorithms and problems
-
J. Apel.
Gröbnerbasen in nichtkommutativen algebren und ihre anwendung.
Dissertation, Universität Leipzig, 1988.
-
Apel, J.
Computational ideal theory in finitely generated extension rings.
Theor. Comput. Sci.(2000), 244(1-2):1-33
-
O. Bachmann and H. Schönemann.
Monomial operations for computations of Gröbner bases.
In Reports On Computer Algebra 18. Centre for Computer Algebra,
University of Kaiserslautern (1998)
-
D. Decker and D. Eisenbud.
Sheaf algorithms using the exterior algebra.
In Eisenbud, D.; Grayson, D.; Stillman, M.; Sturmfels, B., editor,
Computations in algebraic geometry with Macaulay 2, (2001)
-
Jose L. Bueso, J. Gomez Torrecillas and F. J. Lobillo.
Computing the Gelfand-Kirillov dimension II.
In A. Granja, J. A. Hermida and A. Verschoren eds. Ring Theory and Algebraic Geometry, Lect. Not. in Pure and Appl. Maths., Marcel Dekker, 2001.
-
Jose L. Bueso, J. Gomez Torrecillas and F. J. Lobillo.
Re-filtering and exactness of the Gelfand-Kirillov dimension.
Bulletin des Sciences Mathematiques 125(8), 689-715 (2001).
-
J. Gomez Torrecillas and F.J. Lobillo.
Global homological dimension of multifiltered rings and quantized
enveloping algebras.
J. Algebra, 225(2):522-533, 2000.
-
A. Kandri-Rody and V. Weispfenning.
Non-commutative Gröbner bases in algebras of solvable type.
J. Symbolic Computation, 9(1):1-26, 1990.
-
[L1] Levandovskyy, V.
PBW Bases, Non-degeneracy Conditions and Applications.
In Buchweitz, R.-O. and Lenzing, H., editor, Proceedings of
the ICRA X conference, Toronto, 2003.
-
[LS] Levandovskyy V.; Schönemann, H.
Plural - a computer algebra system for non-commutative polynomial
algebras.
In Proc. of the International Symposium on Symbolic and
Algebraic Computation (ISSAC'03). ACM Press, 2003.
-
[LV] Levandovskyy, V.
Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation.
Doctoral Thesis, Universität Kaiserslautern, 2005. Available online at
http://kluedo.ub.uni-kl.de/volltexte/2005/1883/ .
-
[L2] Levandovskyy, V.
On preimages of ideals in certain non-commutative algebras.
In Pfister G., Cojocaru S. and Ufnarovski, V. (editors), Computational Commutative and Non-Commutative Algebraic Geometry, IOS Press, 2005.
-
Mora, T.
Gröbner bases for non-commutative polynomial rings.
Proc. AAECC 3 Lect. N. Comp. Sci, 229: 353-362, 1986.
-
Mora, T.
An introduction to commutative and non-commutative Groebner bases.
Theor. Comp. Sci., 134: 131-173, 1994.
-
T. Nüßler and H. Schönemann.
Gröbner bases in algebras with zero-divisors.
Preprint 244, Universität Kaiserslautern, 1993.
https://www.mathematik.uni-kl.de/organisation/zca/reports-on-ca/.
-
Schönemann, H.
SINGULAR in a Framework for Polynomial Computations.
In Joswig, M. and Takayama, N., editor, Algebra, Geometry and
Software Systems, pages 163-176. Springer, 2003.
-
T. Yan.
The geobucket data structure for polynomials.
J. Symbolic Computation, 25(3):285-294, March 1998.
|