|
7.5.6.0. annihilatorMultiFs
Procedure from library dmodideal.lib (see dmodideal_lib).
- Usage:
- annihilatorMultiFs(F [,eng,us,ord]); F an ideal, eng, us, ord optional ints
- Return:
- ring
- Purpose:
- compute Ann(F[1]^s(1)*...*F[P]^s(P))
with the multivariate algorithm by Briancon and Maisonobe.
- Assume:
- basering is a commutative polynomial ring in characteristic 0
- Note:
- activate the output ring with the
setring command. In this ring,
the ideal annFs is the annihilator of F[1]^s_1*..*F[P]^s_p.
If eng <>0, std is used for Groebner basis computations,
otherwise, and by default slimgb is used.
If us<>0, then syzygies-driven method is used additionally.
If specified, ord describes the desired order from the following choices:
0 - 'dp'
1 - elimination order for x, 'dp' in the parts
2 - elimination order for s, 'dp' in the parts
3 - elimination order for x and s, 'dp' in the parts
4 - elimination order for x and D, 'dp' in the parts
(used for the further work in the Bernstein-Sato ideal)
If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
Example:
| LIB "dmodideal.lib";
ring R = 0,(x,y),dp;
ideal F = x^2-y,y;
def S = annihilatorMultiFs(F,0,0,0);
setring S;
annFs;
==> annFs[1]=-2*x*y*Dy-y*Dx+2*x*s(2)
==> annFs[2]=-x*Dx-2*y*Dy+2*s(1)+2*s(2)
groebner(annFs);
==> _[1]=x*Dx+2*y*Dy-2*s(1)-2*s(2)
==> _[2]=2*x*y*Dy+y*Dx-2*x*s(2)
==> _[3]=4*y^2*Dy^2-y*Dx^2-4*y*Dy*s(1)-8*y*Dy*s(2)+2*y*Dy+4*s(1)*s(2)+4*s(2)^\
2+2*s(2)
|
|