Home Online Manual
Top
Back: homogfacFirstQWeyl_all
Forward: ncHilb
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

7.5.13 nchilbert_lib

Library:
nchilbert.lib
Purpose:
Hilbert series, polynomial and multiplicity for G-Algebras (Plural)

Authors:
Andre Ranft, andre.ranft at rwth-aachen.de
Viktor Levandovskyy, levandov at rwth-aachen.de

Overview:
The theory is found in the book by Bueso, Gomez-Torrecillas, and Verschoren Algorithmic Methods in Non-Commutative Algebra. Applications to Quantum Groups. and in the bachelor thesis by
Andre Ranft, Hilbert polynomials of modules over noncommutative G-algebras, RWTH Aachen, 2014.

Procedures:

7.5.13.0. ncHilb  computes first resp. second Hilbert series of a module as intvec
7.5.13.0. ncHilbertSeries  computes first resp. second Hilbert series of a module as a poly
7.5.13.0. ncHilbertPolynomial  computes the Hilbert polynomial of coker(M)
7.5.13.0. ncHilbertMultiplicity  computes the (Hilbert) multiplicity of coker(M)
7.5.13.0. GKExp  computes the Gelfand-Kirillov dimension of coker(M)
7.5.13.0. mondim  computes the dimension of the monoid ideal B
See also: hilb; multigrading_lib; rinvar_lib.