Home Online Manual
Top
Back: dyckGroup3
Forward: tetrahedronGroup
FastBack:
FastForward:
Up: fpalgebras_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

7.10.2.26 fibonacciGroup

Procedure from library fpalgebras.lib (see fpalgebras_lib).

Usage:
fibonacciGroup(m,d); m an integer, d an integer

Return:
ring

Note:
- the ring contains the ideal I, which contains the required relations - The Fibonacci group F(2, m) with the following presentation < x_1, x_2, ... , x_m | x_i * x_(i + 1) = x_(i + 2) >
- d gives the degreebound for the Letterplace ring
- varying m produces a family of examples

Example:
 
LIB "fpalgebras.lib";
def R = fibonacciGroup(3,5); setring R;
I;
==> I[1]=x(1)*x(2)+x(3)
==> I[2]=x(1)*Y(1)+1
==> I[3]=Y(1)*x(1)+1
==> I[4]=x(2)*Y(2)+1
==> I[5]=Y(2)*x(2)+1
==> I[6]=x(3)*Y(3)+1
==> I[7]=Y(3)*x(3)+1