|
A.4.4 T1 and T2
, resp.
, of an ideal
usually denote the modules of
infinitesimal deformations, resp. of obstructions.
In SINGULAR there are procedures T_1 and T_2 in
sing.lib such that
T_1(j) and T_2(j) compute a standard basis of
a presentation of these modules.
If
are finite dimensional K-vector spaces (e.g., for isolated
singularities), a basis can be computed by applying
kbase(T_1(j)); , resp. kbase(T_2(j)); , the dimensions by
applying vdim .
For a complete intersection j the procedure Tjurina also
computes
, but faster (
in this case).
For a non complete intersection, it is faster to use the procedure T_12
instead of T_1 and T_2 .
Type help T_1; (or help T_2; or help T_12; ) to obtain
more detailed information about these procedures.
We give three examples, the first being a hypersurface, the second a complete
intersection, the third not a complete intersection:
-
load
sing.lib
-
check whether the ideal j is a complete intersection. It is, if
number of variables = dimension + minimal number of generators
-
compute the Tjurina number
-
compute a vector space basis (kbase) of
-
compute the Hilbert function of
-
create a polynomial encoding the Hilbert series
-
compute the dimension of
| LIB "sing.lib";
ring R=32003,(x,y,z),ds;
// ---------------------------------------
// hypersurface case (from series T[p,q,r]):
int p,q,r = 3,3,4;
poly f = x^p+y^q+z^r+xyz;
tjurina(f);
==> 8
// Tjurina number = 8
kbase(Tjurina(f));
==> // Tjurina number = 8
==> _[1]=z3
==> _[2]=z2
==> _[3]=yz
==> _[4]=xz
==> _[5]=z
==> _[6]=y
==> _[7]=x
==> _[8]=1
// ---------------------------------------
// complete intersection case (from series P[k,l]):
int k,l =3,2;
ideal j=xy,x^k+y^l+z2;
dim(std(j)); // Krull dimension
==> 1
size(minbase(j)); // minimal number of generators
==> 2
tjurina(j); // Tjurina number
==> 6
module T=Tjurina(j);
==> // Tjurina number = 6
kbase(T); // a sparse output of the k-basis of T_1
==> _[1]=z*gen(1)
==> _[2]=gen(1)
==> _[3]=y*gen(2)
==> _[4]=x2*gen(2)
==> _[5]=x*gen(2)
==> _[6]=gen(2)
print(kbase(T)); // columns of matrix are a k-basis of T_1
==> z,1,0,0, 0,0,
==> 0,0,y,x2,x,1
// ---------------------------------------
// general case (cone over rational normal curve of degree 4):
ring r1=0,(x,y,z,u,v),ds;
matrix m[2][4]=x,y,z,u,y,z,u,v;
ideal i=minor(m,2); // 2x2 minors of matrix m
module M=T_1(i); // a presentation matrix of T_1
==> // dim T_1 = 4
vdim(M); // Tjurina number
==> 4
hilb(M); // display of both Hilbert series
==> // 4 t^0
==> // -20 t^1
==> // 40 t^2
==> // -40 t^3
==> // 20 t^4
==> // -4 t^5
==>
==> // 4 t^0
==> // dimension (local) = 0
==> // multiplicity = 4
intvec v1=hilb(M,1); // first Hilbert series as intvec
intvec v2=hilb(M,2); // second Hilbert series as intvec
v1;
==> 4,-20,40,-40,20,-4,0
v2;
==> 4,0
v1[3]; // 3rd coefficient of the 1st Hilbert series
==> 40
module N=T_2(i);
==> // dim T_2 = 3
|
| // In some cases it might be useful to have a polynomial in some ring
// encoding the Hilbert series. This polynomial can then be
// differentiated, evaluated etc. It can be done as follows:
ring H = 0,t,ls;
poly h1;
int ii;
for (ii=1; ii<=size(v1); ii=ii+1)
{
h1=h1+v1[ii]*t^(ii-1);
}
h1; // 1st Hilbert series
==> 4-20t+40t2-40t3+20t4-4t5
diff(h1,t); // differentiate h1
==> -20+80t-120t2+80t3-20t4
subst(h1,t,1); // substitute t by 1
==> 0
// The procedures T_1, T_2, T_12 may be called with two arguments and then
// they return a list with more information (type help T_1; etc.)
// e.g., T_12(i,<any>); returns a list with 9 nonempty objects where
// _[1] = std basis of T_1-module, _[2] = std basis of T_2-module,
// _[3]= vdim of T_1, _[4]= vdim of T_2
setring r1; // make r1 again the basering
list L = T_12(i,1);
==> // dim T_1 = 4
==> // dim T_2 = 3
kbase(L[1]); // kbase of T_1
==> _[1]=1*gen(2)
==> _[2]=1*gen(3)
==> _[3]=1*gen(6)
==> _[4]=1*gen(7)
kbase(L[2]); // kbase of T_2
==> _[1]=1*gen(6)
==> _[2]=1*gen(8)
==> _[3]=1*gen(9)
L[3]; // vdim of T_1
==> 4
L[4]; // vdim of T_2
==> 3
|
|