|
A.5.1 G_a -Invariants
We work in characteristic 0 and use the Lie algebra generated by one
vectorfield of the form
. | LIB "ainvar.lib";
int n=5;
int i;
ring s=32003,(x(1..n)),wp(1,2,3,4,5);
// definition of the vectorfield m=sum m[i,1]*d/dx(i)
matrix m[n][1];
for (i=1;i<=n-1;i=i+1)
{
m[i+1,1]=x(i);
}
// computation of the ring of invariants
ideal in=invariantRing(m,x(2),x(1),0);
in; //invariant ring is generated by 5 invariants
==> in[1]=x(1)
==> in[2]=x(2)^2-2*x(1)*x(3)
==> in[3]=x(3)^2-2*x(2)*x(4)+2*x(1)*x(5)
==> in[4]=x(2)^3-3*x(1)*x(2)*x(3)+3*x(1)^2*x(4)
==> in[5]=x(3)^3-3*x(2)*x(3)*x(4)-15997*x(1)*x(4)^2+3*x(2)^2*x(5)-6*x(1)*x(3)\
*x(5)
ring q=32003,(x,y,z,u,v,w),dp;
matrix m[6][1];
m[2,1]=x;
m[3,1]=y;
m[5,1]=u;
m[6,1]=v;
// the vectorfield is: xd/dy+yd/dz+ud/dv+vd/dw
ideal in=invariantRing(m,y,x,0);
in; //invariant ring is generated by 6 invariants
==> in[1]=x
==> in[2]=u
==> in[3]=v2-2uw
==> in[4]=zu-yv+xw
==> in[5]=yu-xv
==> in[6]=y2-2xz
|
|