# Singular          #### D.13.4.4 displayPuiseuxExpansion

Procedure from library `tropical.lib` (see tropical_lib).

Usage:
displayPuiseuxExpansion(puiseux[,#]); puiseux list, # list

Assume:
puiseux is the output of puiseuxExpansion; the optional parameter # can be the string 'subst'

Return:
none

Note:
- the procedure displays the output of the procedure puiseuxExpansion
- if the optional parameter 'subst' is given, then the expansion is substituted into the polynomial and the result is displayed
- if the base field had a parameter and a minimal polynomial, then the new base field will have a parameter and a minimal polynomial; var(2) is the old parameter and it is displayed how the old parameter can be computed from the new one

Example:
 ```LIB "tropical.lib"; ==> Welcome to polymake version ==> Copyright (c) 1997-2015 ==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt) ==> http://www.polymake.org ring r=0,(x,y),ds; poly f=x2-y4+x5y7; displayPuiseuxExpansion(puiseuxExpansion(f,3)); ==> !!!! WARNING: The number of terms computed in the Puiseux expansion were ==> !!!! not enough to find all branches of the curve singularity! ==> ============================= ==> 1. Expansion: ==> ==> The Puiseux expansion lives in the ring ==> Q[[t^(1/2)]] ==> ==> The expansion has the form: ==> y=(1)*t^(1/2) + (1/4)*t^(14/2) ==> ==> ============================= ==> 2. Expansion: ==> ==> The Puiseux expansion lives in the ring ==> Q[[t^(1/2)]] ==> ==> The expansion has the form: ==> y=(-1)*t^(1/2) + (1/4)*t^(14/2) ==> ==> ============================= ==> 3. Expansion: ==> ==> The Puiseux expansion lives in the ring ==> Q[a]/0[[t^(1/2)]] ==> ==> The expansion has the form: ==> y=(a)*t^(1/2) + (1/4)*t^(14/2) ==> ```

### Misc 