# Singular          #### D.13.4.23 texDrawNewtonSubdivision

Procedure from library tropical.lib (see tropical_lib).

Usage:
texDrawNewtonSubdivision(graph[,#]); graph list, # optional list

Assume:
graph is the output of tropicalCurve

Return:
string, the texdraw code of the Newton subdivision of the tropical plane curve encoded by graph

Note:
- the list # may contain optional arguments, of which only one will be considered, namely the first entry of type 'poly'; this entry should be a rational number which specifies the scaling factor to be used; if it is missing, the factor will be computed; the list # may as well be empty
- note that lattice points in the Newton subdivision which are black correspond to markings of the marked subdivision, while lattice points in grey are not marked

Example:
 LIB "tropical.lib"; ==> Welcome to polymake version ==> Copyright (c) 1997-2015 ==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt) ==> http://www.polymake.org ring r=(0,t),(x,y),dp; poly f=x+y+x2y+xy2+1/t*xy; list graph=tropicalCurve(f); // compute the texdraw code of the Newton subdivision of the tropical curve texDrawNewtonSubdivision(graph); ==> ==> \begin{texdraw} ==> \drawdim cm \relunitscale 1 ==> \linewd 0.05 ==> \move (1 2) ==> \lvec (2 1) ==> \move (2 1) ==> \lvec (1 0) ==> \move (1 0) ==> \lvec (0 1) ==> \move (0 1) ==> \lvec (1 2) ==> ==> ==> \move (2 1) ==> \lvec (1 1) ==> \move (1 1) ==> \lvec (1 2) ==> \move (1 0) ==> \lvec (1 1) ==> \move (1 1) ==> \lvec (0 1) ==> \move (0 0) \fcir f:0.6 r:0.03 ==> \move (0 1) \fcir f:0.6 r:0.03 ==> \move (0 2) \fcir f:0.6 r:0.03 ==> \move (1 0) \fcir f:0.6 r:0.03 ==> \move (1 1) \fcir f:0.6 r:0.03 ==> \move (1 2) \fcir f:0.6 r:0.03 ==> \move (2 0) \fcir f:0.6 r:0.03 ==> \move (2 1) \fcir f:0.6 r:0.03 ==> \move (2 2) \fcir f:0.6 r:0.03 ==> \move (2 1) ==> \fcir f:0 r:0.04 ==> \move (1 2) ==> \fcir f:0 r:0.04 ==> \move (1 1) ==> \fcir f:0 r:0.04 ==> \move (1 0) ==> \fcir f:0 r:0.04 ==> \move (0 1) ==> \fcir f:0 r:0.04 ==> \end{texdraw} ==> 

### Misc 