# Singular          #### D.15.17.1 graalMixed

Procedure from library `graal.lib` (see graal_lib).

Usage:
graalMixed(L,t); L ideal, t int (optional)

Return:
graalBearer with all the necessary structures for our machinery if t specified and t>0, puts an upper time limit
on finding a necessary transformation to map an intermediate ideal into general position.

Note:
assumes that the current basering is a domain and that L is a prime ideal.

Example:
 ```LIB "graal.lib"; // see [Mora] Example 6.5 ring Q = 0,(x,y,z),dp; ideal H = y2-xz; qring A = std(H); ideal L = x3-yz,x2y-z2; graalBearer Gr = graalMixed(L); Gr; ==> affine coordinate ring: ==> (QQ),(x,y,z),(dp(3),C) ==> mod ==> ==> ideal defining the subvariety: ==> ==> ==> Al: ==> (0,z),(Y(1),Y(2),x,y),(ds(2),c,dp(2)) ==> mod ==> graal: ==> (0,z),(Y(1),Y(2),y),(c,dp(2),lp(1)) ==> mod <(z)*Y(1)-Y(2)*y,y^5+(-z^4)> ==> where ==> Y(1) represents generator x3-yz ==> Y(2) represents generator x2y-z2 ==> and x,y in Al are mapped to 1/(z)*y^2,y in Graal ==> ```

### Misc 