Singular

D.15.26.21 netRing

Procedure from library `nets.lib` (see nets_lib).

Usage:
netRing(f); f ring

Assume:
R is a ring

Return:
visual presentation of R

Theory:
A Singular object is converted into a character array (a Net) for on screen printing.

Example:
 ```LIB "nets.lib"; // from 3.3.1 Examples of ring declarations ring r1 = 32003,(x,y,z),dp; netRing(r1); ==> FF_32003[x,y,z] ==> // ring r2 = 32003,(x(1..10)),dp; netRing(r2); ==> FF_32003[x(1),x(2),x(3),x(4),x(5),x(6),x(7),x(8),x(9),x(10)] ==> // ring r3 = 32003,(x(1..5)(1..8)),dp; netRing(r3); ==> FF_32003[x(1)(1),x(1)(2),x(1)(3),x(1)(4),x(1)(5),x(1)(6),x(1)(7),x(1)(8),\ x(2)(1),x(2)(2),x(2)(3),x(2)(4),x(2)(5),x(2)(6),x(2)(7),x(2)(8),x(3)(1),x\ (3)(2),x(3)(3),x(3)(4),x(3)(5),x(3)(6),x(3)(7),x(3)(8),x(4)(1),x(4)(2),x(\ 4)(3),x(4)(4),x(4)(5),x(4)(6),x(4)(7),x(4)(8),x(5)(1),x(5)(2),x(5)(3),x(5\ )(4),x(5)(5),x(5)(6),x(5)(7),x(5)(8)] ==> // ring r4 = 0,(a,b,c,d),lp; netRing(r4); ==> QQ[a,b,c,d] ==> // ring r5 = 7,(x,y,z),ds; netRing(r5); ==> FF_7[x,y,z] ==> // ring r6 = 10,(x,y,z),ds; ==> // ** 10 is invalid as characteristic of the ground field. 32003 is used. netRing(r6); ==> FF_32003[x,y,z] ==> // ring r7 = 7,(x(1..6)),(lp(3),dp); netRing(r7); ==> FF_7[x(1),x(2),x(3),x(4),x(5),x(6)] ==> // ring r8 = 0,(x,y,z,a,b,c),(ds(3), dp(3)); netRing(r8); ==> QQ[x,y,z,a,b,c] ==> // ring r9 = 0,(x,y,z),(c,wp(2,1,3)); netRing(r9); ==> QQ[x,y,z] ==> // ring r10 = (7,a,b,c),(x,y,z),Dp; netRing(r10); ==> FF_7(a,b,c)[x,y,z] ==> // ring r11 = (7,a),(x,y,z),dp; minpoly = a^2+a+3; netRing(r11); ==> FF_7[a]/(a2+a+3)[x,y,z] ==> // ring r12 = (7^2,a),(x,y,z),dp; netRing(r12); ==> FF_7^2[x,y,z] ==> // ring r13 = real,(x,y,z),dp; netRing(r13); ==> QQ(6,6)[x,y,z] ==> // ring r14 = (real,50),(x,y,z),dp; netRing(r14); ==> QQ(50,50)[x,y,z] ==> // ring r15 = (real,10,50),(x,y,z),dp; netRing(r15); ==> QQ(10,50)[x,y,z] ==> // ring r16 = (complex,30,j),(x,y,z),dp; netRing(r16); ==> QQ(30,30)[x,y,z] ==> // ring r17 = complex,(x,y,z),dp; netRing(r17); ==> QQ(6,6)[x,y,z] ==> // ring R = 7,(x,y,z), dp; qring r18 = std(maxideal(2)); netRing(r18); ==> FF_7[x,y,z] / ==> ```