# Singular

#### D.14.2.18 disp_zdd

Procedure from library `polybori.lib` (see polybori_lib).

Usage:
disp_zdd(ss); zero-supressed decision diagram ss

Return:
string containing visualization of ss

Note:
the resulting string is the visualization of the polynomial that corresponds to ss, but with a additional structure that comes from the zdd. Every reached else- Branch induces a new line in the string.

Example:
 ```LIB "polybori.lib"; ring r1=0,(x,y,z),Dp; poly f1=xyz+xy+xz+yz+y+z+x+1; zdd s1=f1; disp_zdd(s1); ==> x1(x2(x3+1)+ ==> x3+1)+ ==> x2(x3+1)+ ==> x3+1 ring r2=0,x(1..6),Dp; poly f2=x(1)+x(2)+x(3)+x(5)^2+x(6); zdd s2=f2; disp_zdd(s2); ==> x1+ ==> x2+ ==> x3+ ==> x5+ ==> x6 ring r4=0,x(1..6),Dp; poly f2=x(1)+1; zdd s2=f2; ==> // ** redefining s2 ** disp_zdd(s2); ==> x1+1 ring r2=0,x(1..6),Dp; ==> // ** redefining r2 ** poly f2=x(1)*x(2)*(x(3)-x(5)^2*x(6))+3*x(4)*x(5)-3; zdd s2=f2; ==> // ** redefining s2 ** disp_zdd(s2); ==> x1(x2(x3+ ==> x5(x6)))+ ==> x4(x5)+1 poly f4=0; zdd s4=f4; disp_zdd(s4); ==> 0 poly f5=1; zdd s5=f5; disp_zdd(s5); ==> 1 ```